

Axial Piston Variable Pump A18VLO Series 11

RE 92280

Issue: 06.2012 Replaces: 06.2009

- Size 80
- Nominal pressure 350 bar
- Maximum pressure 400 bar
- For commercial vehicles
- Open circuit

Features

- Variable pump with axial tapered piston rotary group of bent-axis design with special characteristics and dimensions for use in commercial vehicles
- The flow is proportional to the drive speed and displacement.
- The flow can be infinitely varied by adjusting the bentaxis angle.
- Favorable power-to-weight ratio, compact dimensions, optimum efficiency, economical design
- High self-suction capability
- Flange and shaft designed for direct mounting on the power take-off of commercial vehicles
- Low noise levels
- Increased pressure (350/400 bar) compared to standard pump A17VO
- Increased service life through use of long-life bearings

Contents

Ordering code	2
Technical data	3
DRS – Pressure control with load sensing	8
Dimensions size 80	10
Suction stud	12
Coupling flange	13
Installation instructions	14
Other related documents	15
General instructions	16

Ordering code

C)1	02	03	04	05	06		07	08	09	10	11	12	13	14		15
A1	.8V	LO	080	DRS	0	E	1	11	Ν		w	К0			0	-	
Axial piston unit																	
01 B	ent-axis	design	n, variabl	le, nomir	al press	sure 350) bar, ma	ximum p	oressure	400 bar,	for com	mercial	vehicles	(trucks)			A18V
Opera	ating mo	ode															
02 P	ump, O	pen ciro	cuit, wit	h long-lif	e bearir	ngs											LO
Sizes	(NG)																
03 G	Geometr	ic displ	acement	t, see tak	ole of va	lues on	page 6									080]
Control devices																	
04 P	ressure	contro	ller with	load ser	nsing												DRS
Addit	ional fu	nctions	: 1														
05 V	Vithout a	additio	nal funct	tions													0
Addit	ional fu	nctions	; 2														
06 D	RS cont	troller v	with exte	ernal pun	np meas	suring p	ressure p	ort and	mechani	cally adj	ustable	$V_{g min}$ sto	ор				E
Series	5																
07 S	eries 1,	index 1	1														11
Config	guratior	n of por	rts and f	fastening	g thread	s											
08 N	letric, p	ort thre	eads wit	h profile	d sealin	g ring a	ccording	to DIN 3	3852								N
Direct	tions of	rotatio	n														
09 V	iewed o	n drive	shaft									cloc	kwise				R
												coui	nter-cloc	kwise			L
Seals																	
10 F	KM (fluo	or-caou	tchouc)	includin	g the 2 s	shaft sea	al rings i	n FKM									w
Moun	ting flar	nge															
11 S	pecial f	ange IS	SO 7653	-1985 (fc	or trucks	5)											К0
Drive	shaft																
12 S	plined s	shaft sir	milar to	DIN ISO	14 (for	trucks)											E8
S	plined s	shaft E8	3 with co	oupling fl	ange												C8
Port p	plate for	r servic	e lines														
13 T	hreaded	ports	A and S	at rear	•••			1: 0									1
	nreaded	ports	A and S	at rear, v	with suc	tion stu	a mount	ed in S									2
Addit	ional fu	nctions	i 3	tiona													
14 V		auuitioi		uons													0
Stand	lard / sp	ecial v	ersion														
200	necial v	ersion	11														s
		5151011															

Technical data

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil) and RE 90221 (environmentally acceptable hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

If environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed. Please contact us.

Note

Variable pump A18VLO is not suitable for operation with water-containing HF hydraulic fluid.

Selection diagram

Viscosity [mm²/s] Comment Temperature Transport and storage $T_{\min} \ge -40 \ ^{\circ}\text{C}$ factory preservation: at ambient temperature T_{opt} = +5 °C to +20 °C up to 12 months with standard, up to 24 months with long-term v_{max} = 1600 $t \le 3$ min, without load ($p \le 50$ bar), $n \le 1000$ rpm (Cold) start-up $T_{St} \ge -40 \ ^{\circ}C$ Permissible temperature difference between axial piston unit and hydraulic fluid $\Delta T \le 25 \text{ K}$ T = -40 °C to -25 °C v < 1600 to 400 Warm-up phase at $p \le 0.7 \cdot p_{\text{nom}}$, $n \le 0.5 \cdot n_{\text{nom}}$ and $t \le 15$ min Operating phase Temperature difference ΔT = approx. 12 K between hydraulic fluid in the bearing and at port R 115 °C Maximum temperature in the bearing 103 °C measured at port R v = 400 to 10 T = -25 °C to +90 °Cmeasured at port R, Continuous operation v_{opt} = 36 to 16 no restriction within the permissible data Short-term operation $v_{\min} \ge 7$ T_{max} = +103 °C measured at port R, $t < 3 \min$, $p < 0.3 \cdot p_{nom}$ Shaft seal FKM $T \le +115 \ ^{\circ}\text{C}$ see page 4

Viscosity and temperature of hydraulic fluid

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in an open circuit the reservoir temperature. The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum operating viscosity range (v_{opt} , shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, please contact us.

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained. At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

If the above classes cannot be achieved, please contact us.

Case drain fluid

The case drain chamber is connected to the suction chamber. A case drain line from the case to the reservoir is not required (port "R" is plugged).

On versions with DRS control, a case drain line for discharge from port "T" to the reservoir is absolutely essential.

Shaft seal

The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C.

Note

For the temperature range below -25 °C, the values in the table on page 3 are to be observed.

Operating pressure range

Valid when using hydraulic fluids based on mineral oils

Pressure at service line port A		Definition			
Nominal pressure $p_{\sf nom}$	350 bar absolute	The nominal pressure corresponds to the maximum design pressure.			
Maximum pressure p_{max}	400 bar absolute	The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not ex-			
Single operating period	5 s				
Total operating period	50 h	ceed the total operating period.			
Minimum pressure (high-pressure side)	10 bar absolute	Minimum pressure at the high-pressure side (A) which is required in order to pre- vent damage to the axial piston unit.			
Rate of pressure change $R_{A max}$	9000 bar/s	Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.			
Pressure at suction port S (inlet)					
Minimum pressure p_{Smin}	0.8 bar absolute	Minimum pressure at suction port S (inlet) which is required in order to prevent damage to the axial piston unit. The minimum pressure is dependent on the speed and displacement of the axial piston unit.			
Maximum pressure p_{Smax}	2 bar absolute				

▼ Rate of pressure change R_{A max}

Time t

Pressure definition

Time t

Total operating period = $t_1 + t_2 + ... + t_n$

Note

Values for other hydraulic fluids, please contact us.

Table of values

Theoretical values, without efficiency and tolerances; values rounded

Size		NG		80
Displacement geometric, per revolution			cm ³	80
Speed maximum ¹⁾	at $V_{ m g\ max}$	$n_{\sf nom}$	rpm	2240
	at $V_{\rm g}$ < 0.74 • $V_{\rm g max}$	$n_{\max 1}$	rpm	3000
Speed maximum ²⁾		$n_{\max 2}$	rpm	3350
Flow	at $n_{\sf nom}$ and $V_{\sf gmax}$	q_{v}	L/min	179
Power	at n_{nom} , $V_{\text{g max}}$ and Δp = 350 bar	Р	kW	105
Torque	at $V_{ m g\ max}$ and ${\it \Delta}p$ = 350 bar	Т	Nm	446
Rotary stiffness	$V_{g max}$ to 0.5 • $V_{g max}$	c_{\min}	Nm/rad	15911
	$0.5 \cdot V_{g \max}$ bis $0_{(interpolated)}$	c_{\max}	Nm/rad	48971
Moment of inertia f	or rotary group	$J_{ m GR}$	kgm ²	0.0066
Maximum angular a	cceleration	α	rad/s²	24200
Case volume		V	L	0.8
Mass moment		T_{G}	Nm	38
Mass (approx.)		m	kg	24.4

1) The values are valid:

- at an absolute pressure p_{abs} = 1 bar at suction port S
- for the optimum viscosity range from ν_{opt} = 36 to 16 mm²/s
- with hydraulic fluid based on mineral oils
- 2) Maximum rotational speed (limit speed) for increased inlet pressure p_{abs} at suction port S and $V_g < V_{g max}$, see the following diagram.

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Determining the operating characteristics

Formulas					
Flow	~ -	$V_{g} \boldsymbol{\cdot} n \boldsymbol{\cdot} \eta_{v}$		[l/min]	
FIOW	<i>q</i> _v =	1000		[L/111(1]	
Толоно	T	$V_{g} \boldsymbol{\cdot} \Delta p$		[Nime]	
Torque	1 =	20 • $\pi \cdot \eta_{mh}$			
Dowor	D -	$2 \pi \cdot T \cdot n$	$q_{v} \cdot \Delta p$	FL \ A /]	
Power	P =	60000	$= 600 \cdot \eta_{\rm t}$	- [KVV]	

Key		
V_{g}	=	Displacement per revolution in cm ³
Δp	=	Differential pressure in bar
n	=	Speed in rpm
η_{v}	=	Volumetric efficiency
η_{mh}	=	Mechanical-hydraulic efficiency
$\eta_{ m t}$	=	Total efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$)

Permissible axial forces of the drive shaft

The values given are maximum values and do not apply to continuous operation. For drives with radial loading (pinion, V-belt drives), please contact us!

Size	NG		80		
When standstill or when axial piston unit operating in non-pressurized conditions	$\pm F_{\rm ax\ max}$	Ν	0		
Permissible axial force		+ $F_{\rm ax\ max}$	N/bar	86	
per bar operating pressure		- Fax max	N/bar	0	

Note

Influence of the direction of the permissible axial force:

- + $F_{\text{ax max}}$ = Increase in service life of bearings
- $F_{ax max}$ = Reduction in service life of bearings (avoid)

DRS - Pressure control with load sensing

Function of the pressure controller

The pressure controller limits the maximum pressure at the pump outlet within the control range of the pump. The variable pump only delivers as much hydraulic fluid as the consumers actually need. If the operating pressure exceeds the pressure setpoint set at the integrated pressure valve, the pump will regulate to a smaller displacement to reduce the control deviation.

In a non-pressurized state, the pump is swiveled to its initial position to $V_{g max}$ by a return spring.

- Setting range for pressure control: 80 to 400 bar
- Standard setting: 350 bar

Note

A pressure-relief valve is provided to limit the maximum pressure in the system. This must be at least 20 bar above the control setting at the start of opening.

The pressure controller overrides the load sensing controller, i.e. the load sensing function operates below the set pressure.

Load sensing function

The load sensing controller works as a load-pressure controlled flow compensator and adjusts the displacement of the pump to the volume required by the consumer. The flow of the pump is then dependent on the cross section of the external metering orifice (1), which is located between the pump and the consumer. Below the setting of the pressure control and within the control range of the pump, the flow is not dependent on the load pressure. As a rule, the metering orifice is a separately located load sensing directional valve (control block). The position of the directional valve piston determines the opening cross section of the metering orifice and thus the flow of the pump.

The load sensing controller compares the pressure before the metering orifice with that after the orifice and maintains the pressure drop encountered here (differential pressure Δp) and thus the flow constant.

If the differential pressure Δp at the metering orifice rises, the pump is swiveled back (toward $V_{\rm g\,min}$). If the differential pressure Δp drops, the pump is swiveled out (toward $V_{\rm g\,max}$) until equilibrium at the metering orifice is restored.

 $\Delta p_{\text{Metering orifice}} = p_{\text{Pump}} - p_{\text{Consumer}}$

- Setting range for Δp 19 to 40 bar
- Standard setting: 30 bar

The stand-by pressure in zero-stroke mode (metering orifice closed) is slightly higher than the Δp setting.

Characteristic DRS

DRS.E

With external pump measuring pressure port

With the standard DRS controller, the internal pump pressure at the LS piston is compared to the load pressure from the X port. With the DRS.E controller, the pressure from the inlet line to the valve block is led via a separate external line to port X_2 where it is compared to the load pressure at the LS piston. For partial flow quantities, this results in better system efficiency.

Schematic DRS.E

(1) The sensing orifice (control block) is not included in the delivery contents.

Zero-stroke mode

The standard version is designed for intermittent, constantpressure operation. Short-term (< 1 min), zero-stroke operation is permissible up to an operating pressure p_{nom} = 350 bar with reservoir temperature \leq 50 °C.

Note

To ensure thermal stability, a case drain line from port "T" to the reservoir is generally required with the DRS controller.

When ordering, please state in plain text:

- Pressure control setting
- Δp setting for load sensing function

If these details are missing from the order, the pump will be delivered with the standard setting, see page 8.

Dimensions size 80

Drive shaft

Splined shaft similar to DIN ISO 14 ... with coupling flange

Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁶⁾
A	Service line	DIN ISO 228	G1; 18 deep	400	0
S	Suction line	DIN ISO 228	G1 1/4; 20 deep	2	0
Т	Drain line (DRS only)	DIN 3852 ⁵⁾	M12 x 1.5; 12 deep	2	0
M _A	Measuring pressure A	DIN 38525 ⁾	M10 x 1; 8 deep	400	Х
Ms	Measuring suction pressure	DIN 38525 ⁾	M10 x 1; 8 deep	2	Х
M ₁	Measuring stroking chamber	DIN 3852 ⁵⁾	M12 x 1.5; 12 deep	400	Х
R	Air bleed	DIN 3852 ⁵⁾	M18 x 1.5; 12 deep	2	X ⁴⁾
Х	Load pressure (load sensing)	ISO 11926 ⁵⁾	7/16-20UNF-2B; 11.5 deep	400	0
X ₂	Pump working pressure	DIN 3852 ⁵⁾	M14 x 1.5; 12 deep	400	0
R X X ₂	Air bleed Load pressure (load sensing) Pump working pressure	DIN 3852 ⁵⁾ ISO 11926 ⁵⁾ DIN 3852 ⁵⁾	M18 x 1.5; 12 deep 7/16-20UNF-2B; 11.5 deep M14 x 1.5; 12 deep	2 400 400	X ⁴⁾ O O

1) Center bore according to DIN 332 (thread according to DIN 13)

2) Observe the general instructions on page 16 for the maximum tightening torques.

a) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

4) Only open port R for filling and air bleed.

5) The spot face can be deeper than specified in the appropriate standard.

6) O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

Suction stud

Dimensions

Axial p	oiston unit													
NG	Port S	Inner Ø		Version	Material									
	Α	B [in]	B [mm]		number	ØC	ØD	Е	F	G	SW	н	J	к
80	G1 1/4	2	51	Straight	R902600252	30	44	85	65	-	55	368	51	76
				45°	R909831597	34	43	101	81	40	50	397	15	68
				90°	R909831598	35	43	63	43	80	50	379	33	66

Notes on suction line

- Keep as short and straight as possible, without bend
- Use a supporting ring for plastic hoses
- Use two hose clamps to protect the suction hose against air suction
- Note pressure resistance of suction hose compared to ambient pressure

Replacing seals

The O-rings used as seals to prevent air from entering the suction line are to be replaced after every removal and new installation in order to guarantee complete sealing.

Material number for O-rings:

R902083808: O-ring for suction stud G1 1/4

Coupling flange

There are specially modified coupling flanges in 4-hole and 6-hole designs for the cardan-shaft drive.

4-hole coupling flange, complete – Ø90 Material number: R902060152

6-hole coupling flange, complete - Ø100

Material number: R902060153

Note

The coupling flange is installed by screwing it onto the drive shaft with the help of the threaded bore in the end of the drive shaft.

The coupling flange must be glued onto the splined drive shaft with Loctite 574 and clamped (= 130 Nm).

Sudden or abrupt forces acting on the drive shaft could lead to damage to the rotary group and must therefor be avoided.

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

The case drain chamber is internally connected to the suction chamber. A case drain line from the case to the reservoir is not required. However, to ensure thermal stability, a case drain line from port "T" to the reservoir is generally required with the DRS.E controller.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the suction and case drain lines must flow into the reservoir below the minimum fluid level. The permissible suction height h_s results from the overall loss of pressure; it must not, however, be higher than $h_{s max}$ = 800 mm. The minimum suction pressure at port S must also not fall below 0.8 bar absolute during operation and during cold start.

Installation position

See the following examples 1 to 4.

Further installation positions are available upon request. Recommended installation position: 1 and 2.

Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir. Observe the maximum permissible suction height $h_{S max} = 800 mm$.

Installation position	Air bleed	Filling
3	R	L
4	Ms	L

Кеу	
L	Filling / air bleed
R	Air bleed port
S	Suction port
Т	Drain port (DRS only)
SB	Baffle (baffle plate)
h _{t min}	Minimum required immersion depth (200 mm)
h _{min}	Minimum required spacing to reservoir bottom (100 mm)
h _{S max}	Maximum permissible suction height (800 mm)
Ms	Measuring port suction pressure
a _{min}	When designing the reservoir, ensure adequate space be- tween the suction line and the case drain line. This pre- vents the heated, return flow from being drawn directly back into the suction line.

Other related documents

Other pumps with special characteristics and dimensions for use in commercial vehicles can be found in the following data sheets:

- ▶ RE 91510: Fixed pump A17FNO, 250/300 bar
- ▶ RE 91520: Fixed pump A17FO, 300/350 bar
- ▶ RE 91540: 2-circuit fixed pump A18FDO, 350/400 bar
- ▶ RE 92260: Variable pump A17VO, 300/350 bar
- ▶ RE 92270: Variable pump A18VO, 350/400 bar

General instructions

- The pump A18VLO is designed to be used in open circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.
- The data and notes contained herein must be adhered to.

- Before finalizing your design, request a binding installation drawing.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- Pressure controls are not backups against pressure overload. A pressure-relief valve is to be provided in the hydraulic system.
- The following tightening torques apply:
 - Fittings:
 Observe the manufacturer's instructions regarding the tightening torques of the fittings used.
 - Mounting bolts:
 - For mounting bolts with metric ISO threads according to DIN 13, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.
 - Female threads in the axial piston unit:
 The maximum permissible tightening torques M_{G max} are maximum values of the female threads and must not be exceeded. For values, see the following table.
 - Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports		Maximum permissible tightening torque of the	Required tightening torque of the	WAF Hexagon socket of the
Standard	Size of thread	female threads M _{G max}	threaded plugs M_V	threaded plugs
DIN 38521)	M10 x 1	30 Nm	15 Nm ²⁾	5 mm
	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm
	M14 x 1.5	80 Nm	35 Nm	6 mm
	M18 x 1.5	66 Nm	60 Nm	8 mm
ISO 11926	7/16-20UNF-2B	40 Nm	15 Nm	3/16 in
DIN ISO 228	G1	480 Nm	-	-
	G1 1/4	720 Nm	-	-

1) The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.

 $_{\rm 2)}\,$ In the "lightly oiled" condition, the M_V is reduced to 10 Nm for M10 x 1 and to 17 Nm for M12 x 1.5.

Bosch Rexroth AG

Mobile Applications Glockeraustrasse 4 89275 Elchingen, Germany Tel.: +49 73 08 82-0 Fax: +49 73 08 72 74 info.brm@boschrexroth.de www.boschrexroth.com/axial-piston-pumps © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.