

Linear bushings

www.boschrexroth.com

Changes at a glance

- · Intended use and safety information added.
- · Lubrication/assembly instructions expanded and now at the beginning of the catalog.
- Short product name with examples for explanation added to facilitate identification for all linear bushings and linear sets in catalog.
- Compact linear sets (R1027 ... / R1029 ...) with normal radial clearance back in stock.
- Load direction factor diagrams for super linear bushings A/B (R0671 ... /R0673 ...) in sizes Ø 16, 20 and 25 updated.
- Super H/SH linear bushings (R0732 .../ R0733 .../ R0730 ... / R0731 ...) and linear sets no longer discontinued and now back in stock. All technical data added.
- Cast iron housings for linear sets (R1065 ... / R1066 ... / R1067 ... / R1068 ...) being gradually replaced with steel housings.
- Cast iron linear sets (R1065 1/R1067 1/R1081 1) with standard linear bushing without seals added to the catalog (designed for high-temperature applications).
- Cast iron linear sets (R1073 ... /R1074 ...) with standard linear bushings no longer available. They have been replaced in the catalog with aluminum linear sets (R1071 2.. /R1072 2..) with standard linear bushings.
- Radial linear bushings (R0678 ...) and radial compact sets (R1613 ...) no longer discontinued and back in stock. (Heavy duty version with degrees of freedom in circumferential direction) Matching steel shafts installed with shaft support (R1018 ... /1012 ...) now directly in this section. All technical data added.
- Maximum usable shaft length added to shaft overview. Shaft material updated. Link to shaft configuration tool in Rexroth eShop added. All standard shaft versions now with image numbers. Requests can now be submitted through shaft configuration tool.
- The high aluminum shaft support rail (R1050...) and the version with steel shaft installed (R1011...) are available again up to size Ø 50. All technical data added.

eLINE linear sets, R1027

Linear set with steel housing, R1065

Super
Inear bushings,
R0730

Linear set with steel housing, R1067

Linear set, R1071 2

Radial linear bushings, R0678

Steel shaft with shaft support rail, R1011

Radial compact sets, R1613

Linear bushings

Enical Bachingo		
Comparison of linear bushings	9	
Product overview	10	
Important information	12	
Directives and standards	13	
Main dimensions	14	
Load ratings	15	
Life expectancy calculation	16	
Lubrication	21	
Installation	24	
Tolerance tables	26	
eLINE and compact linear bushings	28	
eLINE and compact linear sets	34	95
Super linear bushings 🖸 and 🗉	38	
Linear sets with super linear bushings 🖾 or 🗈	54	
	-/	
Super linear bushings ம and 🖾	74	
Linear sets with super linear bushings 🖽 or 🖾	88	
Standard linear bushings	96	
Linear sets with standard linear bushings	120	
Segmental linear bushings	130	
Linear sets with segmental linear bushings	136	
Radial linear bushings	138	
Linear sets with radial linear bushings	146	
Steel shafts with ready-mounted shaft support rails for radial linear bushings	148	
Radial compact sets	152	
Torque-resistant linear bushings	158	
Linear sets with torque-resistant linear bushings	170	0-160
Linear bushings for combined linear and rotary motion	192	3)
	132	- Ju
Precision steel shafts and shaft end machining	198	0
Steel shafts with shaft support rails ready-mounted, shaft support rails	218	2 2 2
		Real Provide American Science Provide American
Shaft support blocks	236	
Further information	241	

Contents

eLINE a	and compact linear bushings			
	Normal Stainless	R0658		32
eLINE a	and compact linear sets Closed, normal or stainless Adjustable, normal	R1027 R1028		34 34
	Tandem Closed, normal or stainless	R1029		36
Super I	inear bushings 🕰			
	Closed	R0670		50
	Open	R0671		50
Super I	inear bushings 🗉			
	Closed	R0672		36
	Open	R0673		34
Linear s	sets with super linear bushings 🖸 or 🗈			
	Closed Adjustable	R1035 R1036		56 56
	Open Open, adjustable	R1037 R1038		58 58
	Side opening Side opening, adjustable	R1071 R1072	00	60 60
Linear s	sets with super linear bushings 🖾, tandem			
	Closed	R1085		62
	Adjustable	R1032		62
	Open	R1087		64
	Open, adjustable	R1034		64
	Flanged	R1083	o de la	66

Linear se	ts with super linear bushings 🙆 or 🖻		R A	
	Closed Adjustable	R1065 R1066	OF I	68 68
	Open Open, adjustable	R1067 R1068		70 70
	Flanged	R1081		72
Super lin	ear bushings 🖸			
	Closed	R0732		84
	Open	R0733		84
Super lin	ear bushings 🕮			
	Closed	R0730		86
	Open	R0731		86
Linear se	ts with super linear bushings 🖸 or 🕮		<u></u>	
	Closed Adjustable	R1701 R1702		90 90
	Open	R1703		92
	Open, adjustable	R1704	())))	92
	Side opening, adjustable	R1706		94

Contents

Standar	d linear bushings			
	Closed, no wiper seals	R0600		104
	Closed, with wiper seals	R0602		104
	Closed, no wiper seals, stainless Closed, wiper seals, stainless	R0600 R0602		106 106
		R0602		100
	Adjustable, no wiper seals Adjustable, wiper seals	R0610 R0612		108 108
	Open, no wiper seals Open, wiper seals	R0630 R0632		110 110
	Tandem Wiper seals, normal or stainless	R0650		112
	Flanged Wiper seals, normal or stainless	R0740		114
	Flanged tandem Wiper seals, normal or stainless	R0741		116
	Central flanged Wiper seals, normal or stainless	R0742		118
Linear s	ets with standard linear bushings			
	Closed Adjustable	R1065 R1066		122 122
	Open Open, adjustable	R1067 R1068	Ser.	124 124
	Side opening Side opening, adjustable	R1071 R1072	° •	126 126
	Flanged	R1081		128
Segmer	tal linear bushings			
	Normal or stainless	R0668		134
Lincoro	ets with segmental linear bushings			

Radial line	ar bushings		o	
	No wiper seal or fully sealed	R0678		144
Linear set	s with radial linear bushings		R A	
	Open, adjustable	R1076		146
	Side opening, adjustable	R1078	0.	150
Radial con	npact sets			
	Open, adjustable	R1613	Q	154
Torque-res	sistant linear bushings			
	Type 1: One ball guide groove Type 2: Two ball guide grooves	R0696 0 R0696 3		166 166
Torque-res	sistant compact linear bushings	R0720		168
Linear set	s with torque-resistant linear bushings, aluminum ho	ousing		
	Type 1: One ball guide groove Type 2: Two ball guide grooves	R1098 2 R1098 5	00	170 170
	Tandem Type 1: One ball guide groove Type 2: Two ball guide grooves	R1099 2 R1099 5	000	172 172
Linear set	s with torque-resistant linear bushings, steel housing	g		
	Type 1: One ball guide groove Type 2: Two ball guide grooves	R1096 2 R1096 5		174 174
	Tandem Type 1: One ball guide groove Type 2: Two ball guide grooves	R1097 2 R1097 5	00	176 176
Linear set	s with torque-resistant compact linear bushings			
		R0721		180
	Tandem	R0722		182
	Flanged	R0723	Ĩ	184

Contents

Torque-resistant linear bushings with four ball guide grooves R0724 Flanged R0725 Miniature flanged R0726 Miniature flanged R0727 Rotational flange R0727 Series 618 deep-groove ball bearing R0663 Series 618 deep-groove ball bearing R0663 Series 618 deep-groove ball bearing R0663 Needle bearing, no wiper seals R0664 Needle bearing, no wiper seals R0667 Precision steel shafts/shaft end machining Soid shaft - Heat-treated steel, stainless or hard chrome-plated R1000 Hollow shaft R1000 - Heat-treated steel or hard chrome-plated R1001 Steel shafts with shaft support rails ready-mounted, shaft support rails R1000 Flanged, low profile R1010 Flanged, low profile R1010 Side mounting R1025 Flanged, low profile R1011 Side mounting R1015 Flanged, low profile R1015 Flanged, low profile R1016 For radial linear bushings R1016 Flangeless R1016 <td< th=""><th></th></td<>	
Flanged R0725 Miniature flanged R0726 Miniature flanged R0726 Rotational flange R0727 Series 618 deep-groove ball bearing R0663 Needle bearing, no wiper seals R0665 Needle bearing and wiper seals R0665 Needle bearing and wiper seals R0665 Solid shaft R1000 - Heat-treated steel, stainless or hard chrome-plated R1000 Hollow shaft R1001 - Heat-treated steel or hard chrome-plated R1001 Steel shafts with shaft support rails ready-mounted, shaft support rails R1025 Flanged, low profile R1010 For open standard and super linear bushings R1025 Flanged, low profile R1011 Side mounting R1012 Flanged, low profile R1013 Flangeless R1013 Flangeless, with reference edge R1018 Flangeless, with reference edge R1018 For radial linear bushings R1018 Flangeless, with reference edge R1018 For radial linear bushings R1012 Shaft support blocks	186
Miniature flanged R0726 Rotational flange R0727 Rotational flange R0727 Linear bushings for combined linear and rotary motion Series 618 deep-groove ball bearing Series 60 deep-groove ball bearing R0663 Needle bearing, no wiper seals R0663 Needle bearing and wiper seals R0667 Precision steel shafts/shaft end machining R1000 Solid shaft R1000 - Heat-treated steel or hard chrome-plated Image (Now profile Hollow shaft R1001 - Heat-treated steel or hard chrome-plated Image (Now profile Flanged, low profile R101 Flanged, low profile R101 Flanged, low profile R101 Side mounting R101 Flanged, low profile R101 Side mounting R101 Flanged, low profile R101 Side mounting R1018 Flangeless R1018 For radial linear bushings R1018 Flangeless R1018 For radial linear bushings R1052 For radial inear bushings R1052	100
Rotational flange R0727 Rotational flange R0727 Linear bushings for combined linear and rotary motion Series 618 deep-groove ball bearing R0663 Series 60 deep-groove ball bearing R0663 R0664 Needle bearing, no wiper seals R0667 Precision steel shafts/shaft end machining R1000 - Heat-treated steel, stainless or hard chrome-plated R1000 Hollow shaft R1001 - Heat-treated steel or hard chrome-plated R1001 Steel shafts with shaft support rails ready-mounted, shaft support rails Steel shaft support rails ready-mounted, shaft support rails For open standard and super linear bushings R1010 Flanged, low profile R1011 Flanged, low profile<	188
Linear bushings for combined linear and rotary motion Series 618 deep-groove ball bearing R0663 Series 60 deep-groove ball bearing R0663 Needle bearing no wiper seals R0665 Needle bearing and wiper seals R0667 Precision steel shafts/shaft end machining R1000 Solid shaft R1000 - Heat-treated steel, stainless or hard chrome-plated R1001 Hollow shaft R1001 - Heat-treated steel or hard chrome-plated R1001 Steel shafts with shaft support rails ready-mounted, shaft support rails For open standard and super linear bushings R1010 Flanged, low profile R1011 Side mounting R1011 Side mounting R1011 Side mounting R1015 Flanged, high profile R1011 Side mounting R1015 Flangeless, with reference edge R1016 For radial linear bushings R1018 Flangeless, with reference edge R1018 For radial compact sets R1012	188
Series 618 deep-groove ball bearing R0663 Series 60 deep-groove ball bearing R0664 Needle bearing and wiper seals R0665 Precision steel shafts/shaft end machining R1000 Solid shaft R1000 - Heat-treated steel, stainless or hard chrome-plated R1000 Hollow shaft R1001 - Heat-treated steel or hard chrome-plated R1001 Steel shafts with shaft support rails ready-mounted, shaft support rails R1010 For open standard and super linear bushings R1025 Flanged, low profile R1011 For profile systems R1025 Flanged, low profile R1011 Side mounting R1013 Flangeless, with reference edge R1018 R1018 R1018 R1018 R1018 Steel shaft support blocks R1014	190
Series 618 deep-groove ball bearing R0663 Series 60 deep-groove ball bearing R0664 Needle bearing and wiper seals R0665 Precision steel shafts/shaft end machining R1000 Solid shaft R1000 - Heat-treated steel, stainless or hard chrome-plated R1000 Hollow shaft R1001 - Heat-treated steel or hard chrome-plated R1001 Steel shafts with shaft support rails ready-mounted, shaft support rails R1010 Steel shafts with shaft support rails ready-mounted, shaft support rails R1010 For open standard and super linear bushings R1010 Flanged, low profile R1011 Side mounting R1014 Flanged, low profile R1011 Side mounting R1013 Flangeless R1014 Flangeless, with reference edge R1016 For radial linear bushings R1018 Flangeless, with reference edge R1018 For radial compact sets R1018 R1052 R1052 For radial compact sets R1012	
Series 60 deep-groove ball bearing R0664 Needle bearing, no wiper seals R0665 Needle bearing and wiper seals R0667 Precision steel shafts/shaft end machining R1000 - Heat-treated steel, stainless or hard chrome-plated R1000 - Heat-treated steel or hard chrome-plated R1001 - Heat-treated steel or hard chrome-plated R1001 Steel shafts with shaft support rails ready-mounted, shaft support rails R1010 For open standard and super linear bushings R1010 Flanged, low profile R1014 Flanged, low profile R1014 Side mounting R1015 Flangeless R1015 Flangeless R1013 Flangeless R1013 Flangeless R1013 Flangeless R1016 For radial linear bushings R1018 For radial compact sets R1018 R1052 R1018 R1052 R1018 Shaft support blocks R1012	10.4
Needle bearing, no wiper seals R0665 Needle bearing and wiper seals R0667 Precision steel shafts/shaft end machining R1000 Solid shaft R1000 - Heat-treated steel, stainless or hard chrome-plated R1001 Hollow shaft R1001 - Heat-treated steel or hard chrome-plated R1001 Steel shafts with shaft support rails ready-mounted, shaft support rails For open standard and super linear bushings R1010 Flanged, low profile R1014 Flanged, low profile R1014 Flanged, low profile R1015 Flanged, high profile R1013 Side mounting R1015 Flangeless R1016 For radial linear bushings R1013 Flangeless, with reference edge R1018 R1052 R1018 For radial compact sets R1012	194
Needle bearing and wiper seals R0667 Precision steel shafts/shaft end machining R1000 Solid shaft R1000 - Heat-treated steel, stainless or hard chrome-plated R1001 Hollow shaft R1001 - Heat-treated steel or hard chrome-plated R1001 Steel shafts with shaft support rails ready-mounted, shaft support rails For open standard and super linear bushings Flanged, low profile R1010 For open standard and super linear bushings R1010 Flanged, low profile R1011 Steel shafts with shaft support rails ready-mounted, shaft support rails For open standard and super linear bushings Flanged, low profile R1010 For open standard and super linear bushings R1014 Flanged, low profile R1011 Stee mounting R1013 Flangeless R1013 Flangeless, with reference edge R1016 For radial linear bushings R1018 R1052 R1052 For radial compact sets R1052 Shaft support blocks R1052	194 196
Precision steel shafts/shaft end machining R1000 Solid shaft R1000 - Heat-treated steel, stainless or hard chrome-plated R1001 Hollow shaft R1001 - Heat-treated steel or hard chrome-plated R1001 Steel shafts with shaft support rails ready-mounted, shaft support rails For open standard and super linear bushings R1010 For profile systems R1025 Flanged, low profile R1011 Side mounting R1011 Side mounting R1013 Flangeless R1013 Flangeless, with reference edge R1018 For radial linear bushings R1018 For radial compact sets R1012	196
Solid shaft R1000 - Heat-treated steel, stainless or hard chrome-plated R1001 Hollow shaft R1001 - Heat-treated steel or hard chrome-plated R1001 Steel shafts support rails ready-mounted, shaft support rails For open standard and super linear bushings R1010 For profile systems R1025 Flanged, low profile R1011 Side mounting R1015 Flangeless, with reference edge R1018 For radial linear bushings R1018 For radial compact sets R1018 Shaft support blocks R1018	190
- Heat-treated steel, stainless or hard chrome-plated Hollow shaft - Heat-treated steel or hard chrome-plated Hollow shaft - Heat-treated steel or hard chrome-plated Steel shafts with shaft support rails ready-mounted, shaft support rails For open standard and super linear bushings Flanged, low profile For profile systems Flanged, low profile R1010 For profile systems Flanged, low profile R1014 Flanged, high profile R1014 Flanged, high profile R1015 Flangeless R1013 Flangeless, with reference edge For radial linear bushings For radial compact sets Shaft support blocks	
- Heat-treated steel or hard chrome-plated	203
Steel shafts with shaft support rails ready-mounted, shaft support rails For open standard and super linear bushings Flanged, low profile R1010 For profile systems R1025 Flanged, low profile R1014 Flanged, high profile R1011 Side mounting R1015 Flangeless R1013 Flangeless, with reference edge R1016 For radial linear bushings R1018 R1052 R1052 For radial compact sets R1012	203
For open standard and super linear bushings R1010 Flanged, low profile R1025 Flanged, low profile R1014 Flanged, low profile R1014 Flanged, high profile R1011 Side mounting R1015 Flangeless R1013 Flangeless, with reference edge R1016 For radial linear bushings R1018 For radial compact sets R1012	
Flanged, low profile R1010 For profile systems R1025 Flanged, low profile R1014 Flanged, high profile R1011 Side mounting R1015 Flangeless R1013 Flangeless, with reference edge R1016 For radial linear bushings R1018 R1052 R1012	
For profile systems R1025 Flanged, low profile R1014 Flanged, high profile R1011 Side mounting R1015 Flangeless R1013 Flangeless, with reference edge R1016 For radial linear bushings R1018 For radial compact sets R1012	
Flanged, low profile R1014 Flanged, high profile R1011 Side mounting R1015 Flangeless R1013 Flangeless, with reference edge R1016 For radial linear bushings R1018 For radial compact sets R1012	222
Flanged, high profile R1011 Side mounting R1015 Flangeless R1013 Flangeless, with reference edge R1016 For radial linear bushings R1018 For radial compact sets R1012	224
Side mounting R1015 Flangeless R1013 Flangeless, with reference edge R1016 For radial linear bushings R1018 For radial compact sets R1012	226
Flangeless R1013 Flangeless, with reference edge R1016 For radial linear bushings R1018 R1052 R1012 Shaft support blocks	228
Flangeless, with reference edge R1016 For radial linear bushings R1018 Tor radial compact sets R1012	230
For radial linear bushings R1018 R1052 For radial compact sets R1012	232
For radial compact sets R1052 R1012 Shaft support blocks Image: Compact sets	234
For radial compact sets R1012 Shaft support blocks Image: Compact sets	148
Shaft support blocks	148 156
Aluminum, compact R1058 $\left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	166
Aluminum, compact R1058 Aluminum R1057	166
Cast iron/steel R1057	168
Cast iron, flanged R1055	170

Comparison of linear bushings

Requirements	Linear bushi	ing model						
	Compact/	Super	Super H/	Standard	Segmental	Radial	Torque-	Combined
	eLINE	A/B	SH				resistant	linear and
								rotary
								motion
			Contraction of the second				OPT (O	
Frequency of use	+++	+++	+	++	++	+	+	+
Low cost	+++	++	+	++	+++	+	+	+
Very easy to install	+++	++	+	++	++	+	+	++
Very compact design	+++	+	+	+	+++	-	+	+
Stainless version also available	+++	-	-	+++	+++	-	-	_
High load	+	++	+++	+	+	+++	++	+
Misalignment compensation	-	+++ ¹⁾	+++	-	-	-	-	-
Very smooth travel	++	+++	+	++	++	++	++	++
High temperature > 100 °C	-	-	-	+++	-	-	-	-
Coarse soiling	-	-	-	+++	-	-	-	_
Humid/wet environment	++	-	++	+++	++	-	-	-
Water-based coolant/lubricants	++	-	-	+++	++	-	-	-
Designed for vacuum	-	-	-	+++	-	-	-	-
Torque transmission	-	-	-	-	-	-	+++	_
Combined linear and rotary motion	-	-	-	-	-	-	-	+++
1) Super A only	+++ Very go	bod		+	- Fair		-	
	++ Good			_		te (not recom	mended)	
Technical data	Linear bushi	ing model						

Technical data	Linear bushing model								
		Compact/	Super A/B	Super H/	Standard	Segmental	Radial	Torque-	Combined
		eLINE		SH				resistant	linear and
									rotary
									motion
Dynamic load rating C _{max} ¹⁾	(N)	5,680	12,060	23,500	21,000	3,870	54,800	9,250 ⁴⁾	21,000
Diameter d	(mm)	8 to 50	10 to 50	20 to 60	3 to 80	12 to 40	30 to 80	12 to 50	5 to 80
Friction coefficient μ^{2}	()	0.001 to	0.001 to	0.001 to	0.001 to	0.001 to	0.001 to	0.001 to	0.001 to
		0.004	0.004	0.004	0.0025	0.004	0.002	0.004	0.0025
Speed v _{max}	(m/s)	5	3	5	2.5	3	2	3	2.5
Acceleration a _{max}	(m/s ²)	150	150	150	100	150	50	150	100
Operating temperature	(°C)		-10 to 80 ³⁾						

1) Maximum speed depends on the load rating. 🗯 "Technical data" section for each linear bushing

2) No seals. The friction coefficient is lowest under high load. It can also be greater than the indicated value under low loads.

3) Standard linear bushings without seals can also be used above 100 °C.

4) For torque-resistant linear bushings with one or two ball guide grooves; version with four ball guide grooves up to 36,600 N.

Product overview

In this catalog, you will find the right solution for any application from the broad range of linear bushing guides.

The eLINE linear bushing has a compact design and **reduced radial clearance**. The integrated metal holding ring in this model means it does not require the usual additional axial securing in the mounting hole. The eLINE linear bushing has two integrated wiper seals, and the normal and stainless versions come greased from the factory.

The compact linear bushings are essentially identical to the eLINE linear bushings. They come with normal radial clearance and optional integrated wiper seals in normal and stainless versions.

The super linear bushing has built-in misalignment compensation that compensates for an angle misalignment between the housing and shaft of up to 0.5 degrees without reducing load rating due to angular pressure. This misalignment can be caused by shaft deflection due to high load or inaccuracies in the connecting structure. The self-aligning feature ensures that the balls enter the load-bearing zone smoothly and that the load is distributed evenly across the entire row of balls. This is what produces the unmatched smooth travel, robust construction and extra long service life of this linear bushing.

For high loads and extra long guides, the super linear bushings are also available in an open design for use on supported shafts.

The super linear bushing without misalignment compensation is the solution for applications where only one linear bushing is used per shaft and the linear bushing is not allowed to commute on the shaft.

Compared to the current and proven super linear bushing , the super linear bushings and and have more load-bearing steel bearing plates and rows of balls. Very high load ratings and extra high load ratings allow movement of very heavy loads with full alignment compensation.

The standard linear bushing is extremely robust thanks to its steel ball retainer and designed for applications with a high level of soiling, such as woodworking. It is available in closed, adjustable and open versions. Standard linear bushings without seals are available for use at very high temperatures. The closed standard linear bushing is also available in stainless steel and is specially designed for applications under vacuum or in the food industry.

With its sturdy plastic housing, the segmental linear bushing is the most inexpensive ready-to-install linear bushing guide. This linear bushing also comes in a stainless version for applications in corrosive conditions or with high demands for cleanliness, such as in food processing, semiconductor manufacturing and medical technology.

The radial linear bushings are high-precision linear bushings for moving extremely heavy loads. Radial ball redirection allows numerous rows of balls and extremely high load ratings.

This series stands out in its extreme rigidity and smooth running, as well as additional degrees of freedom in circumferential direction.

For applications where other linear guides tend to warp due to imprecise substructures.

Torque-resistant linear bushings are full-fledged linear guides with just one shaft. The torque is transmitted through underlying ball circuits.

These torque-resistant linear bearings come with multiple ball guide grooves depending on the degree of the torque being transmitted,

Linear bushings for combined linear and rotary motion come with a deepgroove ball bearing or a needle bearing. They are designed for swiveling movements and moderate speeds.

Linear sets are complete bearing units consisting of a housing with one or two Rexroth linear bushings. Numerous versions are available. Thanks to efficient manufacturing, linear sets offer the user significant cost benefits over in-house designs. The housing is easily oriented during installation to prevent the linear bushings from warping.

Precision steel shafts come in various tolerances, as either solid or hollow shafts made of heat-treated steel, stainless steel, or hard chrome-plated steel. Rexroth offers precision steel shafts cut to your size with chamfering on both ends or machined according to your drawing or description.

Use our shaft configuration tool.

www.boschrexroth.com/shaft-configuration

Steel shafts with shaft support rails ready-mounted, shaft support rails and shaft support blocks in various designs round out the linear bushings.

Intended use

Important information

	 Linear bushing guides are intended only for guiding and positioning in machines. The product is intended solely for professional use and not for private use. Intended use includes reading and understanding the included documentation, specifically this safety information.
Improper use	Any use other than that described as intended is considered improper and is prohibit- ed. Installing or using unsuitable products in safety-relevant applications can produce unintended operating states that can result in injury and/or property damage. The product should therefore only be used in safety-relevant applications if such use is expressly specified and permitted in the product documentation. Bosch Rexroth AG cannot be held liable for damage resulting from improper use. The user bears all risk resulting from improper use. Improper use of the product includes:

- The transport of persons

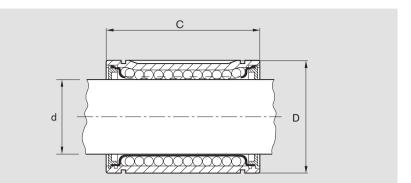
General safety information

• Follow the safety regulations of the country in which the product is used.

 Linear bushings are linear guides for absorbing all transverse forces and axial torque, and some special models can even absorb rotational torque along all axes.

- Follow all applicable accident prevention and environmental safety regulations.
- Only use the product when it is in good working order.
- Observe the technical data and environmental conditions specified in the product documentation.
- Do not use the product until it has been determined that the end product (e.g., a machine or system) using the product is in compliance with countryspecific provisions, safety regulations and standards of application.
- Do not use Rexroth linear bushings in explosive environments as per Directive 94/9/EC (ATEX).
- Please refrain from modifying or altering Rexroth linear bushings. Only perform the tasks described in the "Quick Start Guide" or "Linear Bushing Assembly Manual".
- Please refrain from disassembling the product.
- The product will produce a certain level of noise at high travel speeds. Take appropriate steps to protect hearing, if necessary.
- Comply with special safety requirements in certain sectors (e.g., crane construction, theater, food industry technology) set forth in legislation, directives and standards.
- Make sure all bolt connections are state of the art.
- Bolts with a minimum strength class of 8.8 under ISO 4762 must be used for fastening. The maximum tightening torques for this bolt class should also not be exceeded when using stronger bolts.
- The maximum load capacity of a guide is determined not just by the static and dynamic load-bearing capacity of the rolling contacts, but primarily by the bolt connection joining the shaft support rail and housing. DIN ISO 13012-1 and DIN ISO 13012-2 specify the relevant thread diameters and hole spacing.
- **ATTENTION** Make sure to use all mounting holes in the housing and support shaft rail.

Directives and standards


Rexroth linear bushing guides are designed for reliability and high precision in dynamic, linear applications. The machine tool industry and other sectors must comply with a variety of standards and directives. These requirements differ substantially around the world. This is why familiarizing yourself with regional standards and directives is absolutely essential.

DIN EN ISO 12100	This standard describes machine safety – principles and guidelines, risk assessments and risk reduction. It provides a general overview as well as a guide on the critical development of machines and their intended use.
DIN ISO 13012	Rolling bearings – Accessories for sleeve-type linear ball bearings. This part of ISO 13012 specifies the boundary dimensions, other relevant dimensions and their tolerances for accessories for sleeve-type linear ball bearings specified in ISO 10285. This part of ISO 13012 applies to: Housings, shaft support rails, shaft support blocks and shafts.
Directive 2006/42/EC	The Machinery Directive describes the basic health and safety requirements for designing and manufacturing machinery. The machine manufacturer or authorized representative must ensure that a risk assessment is performed in order to determine the health and safety requirements for the machine. The machine must be designed and built in accordance with this risk assessment.
Directive 2001/95/EC	This directive describes general product safety for all products placed on the market and intended for or will presumably be used by consumers, including products used by consumers as part of a service.
Directive 85/374/EEC	This directive describes liability for faulty products and applies to industrially pro- duced movables regardless of whether or not they have been installed in immovables.
Directive 76/769/EEC	This directive describes the restrictions on the marketing and use of certain dan- gerous substances and preparations. Substances are chemical elements and compounds thereof that occur naturally or as a result of production. Preparations are mixtures, compounds and solutions consisting of two or more substances.

Dimensions (mm)

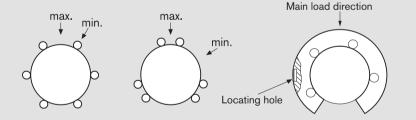
Main dimensions

Comparison of individual linear bushings

Dimensio	115 ()											
Shaft		•	Super line	ear	Super line	ear	Standard linear Segment				ear	
	linear bus	hings	bushings		bushings		bushings		bushings		bushings	
			🖸 and 🗉		🖸 and 🕸							
Ød	D	С	D	С	D	С	D	С	D	С	D	С
3	-	-	-	-	-	-	7	10	-	-	-	-
4	-	-	-	-	-	-	8	12	-	-	-	-
5	-	-	-	-	-	-	12	22	-	-	-	-
8	15	24	-	-	-	-	16	25	-	-	-	-
10	17	26	19	29	-	-	19	29	-	-	-	-
12	19	28	22	32	-	-	22	32	20	24	-	-
14	21	28	-	-	-	-	-	-	-	-	-	-
16	24	30	26	36	-	-	26	36	25	28	-	-
20	28	30	32	45	32	45	32	45	30	30	-	-
25	35	40	40	58	40	58	40	58	37	37	-	-
30	40	50	47	68	47	68	47	68	44	44	60	75
40	52	60	62	80	62	80	62	80	56	56	75	100
50	62	70	75	100	75	100	75	100	-	-	90	125
60	-	-	_	-	90	125	90	125	-	-	110	150
80	-	-	-	-	-	-	120	165	-	-	145	200

DIN ISO 10285 Linear ball bearings - Metric series

This standard specifies the boundary dimensions, tolerances and terms for linear ball bearings. It divides linear bushings into size groups and tolerance classes.


DIN ISO 13012 Linear ball bearings - Accessories

This standard specifies the boundary dimensions and other useful dimensions of accessories for metric series linear ball bearings.

Accessories include bearing housings, shafts, shaft support blocks and shaft support rails. It is used in conjunction with DIN ISO 10285.

Load ratings

Definition as per DIN ISO 14728 Dynamic load rating C	The radial load of constant magnitude and direction which a linear rolling bearing can theoretically endure for a nominal service life of 10 ⁵ m distance traveled. Note: The dynamic load rating requires that the stroke of the linear ball bearing is at least three times its overall length. Some of the dynamic load ratings in the tables are up to 30% above the DIN values. They have been verified in experiments.
Static load rating C_0	The static radial load corresponding to a calculated load of 5,300 MPa at the center point of the contact point under the heaviest load between rolling element and track (shaft). Note: The permanent overall deformation of rolling element and track corresponds to roughly 0.0001 times the diameter of the rolling element.
Nominal service life	The calculated service life which an individual linear rolling bearing or a group of apparently identical rolling element bearings operating under the same conditions can attain with a 90% probability using contemporary, commonly used materials and manufacturing quality under conventional operating conditions.
Load direction	If load direction and location of the linear bushings are not clearly defined, the mini- mal values of the load ratings must be used. The maximum load ratings can only be used if the bearings can be installed along the load direction. The tables show the minimum, maximum or both load ratings for the closed and adjustable linear bushings, depending on the type. Open linear bushings must be secured. The load rating indicated for the main load direction vertical to the opening applies here.
	Main load direction

Life expectancy calculation

Nominal service life

$$L = \left(\frac{C}{F_m} x f_H x f_t x f_s\right)^3 \cdot 10^5$$

$$L = \left(\frac{C}{F_m} x f_H x f_t x f_s\right)^3 \cdot 10^5$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

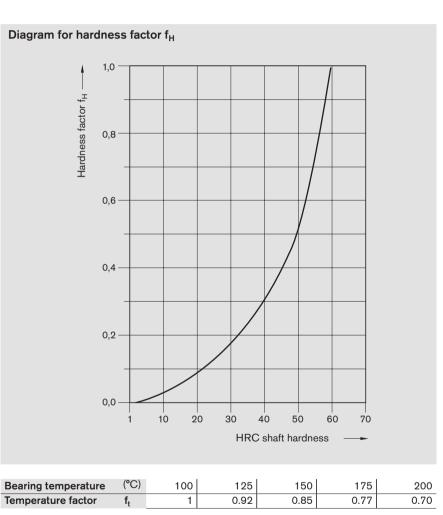
$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$


$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_s x 60}$$

$$L_{hrs} = \frac{L}{2 \cdot s x n_$$

Shaft hardness factor

Temperature factor

For standard linear bushings only

Short stroke factor

Short stroke means the stroke length of eLINE, compact, super and segmental linear bushings is less than three times the overall length of the linear bushing. In this instance, the service life of the shaft is less than that of the linear bushing. See the technical data for each linear bushing for more information. When the stroke is more than three times the overall length of the linear bushing, the short stroke factor $f_s = 1$.

(N)

(N)

(%)

(-)

Equivalent dynamic bearing load

When bearing load varies in the same load direction, the equivalent dynamic load ${\rm F}_{\rm m}$ is calculated as follows:

 $F_{m} = \sqrt[3]{|F_{1}|^{3} x \frac{q_{s1}}{100\%} + |F_{2}|^{3} x \frac{q_{s2}}{100\%} + ... + |F_{n}|^{3} x \frac{q_{sn}}{100\%}}$

For varying directions of load, the resulting load must then be calculated. Preloads and any pitching torque must also be factored into the life expectancy calculation.

Determining load rating

The following formula can be used for the estimate:

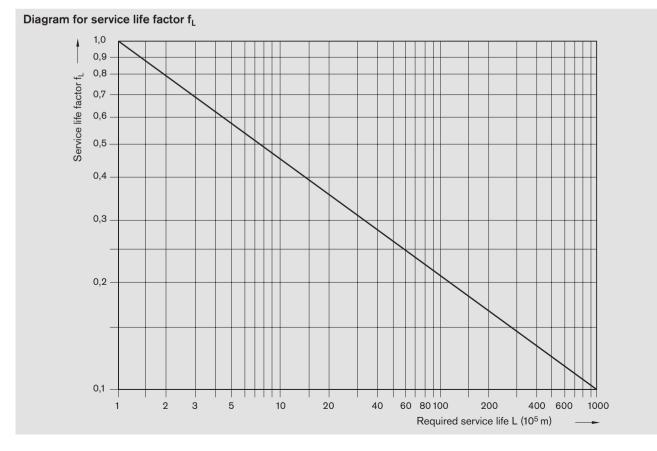
 $F_1, F_2 \dots F_n$ = Stepped individual dynamic loads

in stages 1 to n

 $q_{s1},\,q_{s2}\,\ldots\,q_{sn}\ =\ \ Travel\ ratios\ for\ F_1\,\ldots\,F_n$

= No. stages

= Equivalent dynamic bearing load


$$C_{req} = \frac{F_m}{f_H x f_t x f_s x f_L}$$

 F_m

n

C _{rec}	=	Required dynamic load rating	(N)
Fm	=	Equivalent dynamic bearing load	(N)
f _H	=	Shaft hardness factor	
f_t	=	Temperature factor	(-)
f _s	=	Short stroke factor (for segmenta	I,
		compact, eLINE and super linear	
		bushings)	(-)
f_{L}	=	Service life factor	(-)

Impact of service life

Life expectancy calculation

Load ratings

Dimensions	Load ra	oad ratings (N)												
(mm)	eLINE,		Super lin	uper linear bushings					Standard linear Segmenta		al linear Radial linear			
Shaft	compac	t linear:							bushings	;	bushings		bushings	
	bushing	IS	Ø , B		◙		<u>8</u>							
Ød	C	C ₀	С	C ₀	С	C ₀	С	C ₀	С	C ₀	С	C ₀	C	C ₀
3	-	-	-	-	-	-	-	-	55	45	-	-	-	-
4	-	-	-	-	-	-	-	-	70	60	-	-	-	-
5	-	-	-	-	-	-	-	-	180	140	-	-	-	-
8	500	350	-	-	-	-	-	-	320	240	-	-	-	-
10	600	410	600	330	-	-	-	-	300	260	-	-	-	-
12	730	420	830	420	-	-	-	-	420	280	480	420	-	-
14	760	430	-	-	-	-	-	-	-	-	-	-	-	-
16	950	500	1,020	530	-	-	-	-	580	440	720	620	-	-
20	1,120	610	2,020	1,050	2,520	1,880	3,530	2,530	1,170	860	1,020	870	-	-
25	2,330	1,310	3,950	2,180	4,430	3,360	6,190	4,530	2,080	1,560	1,630	1,360	-	-
30	3,060	1,880	4,800	2,790	6,300	5,230	8,800	7,180	2,820	2,230	2,390	1,960	8,500	9,520
40	5,040	3,140	8,240	4,350	9,680	7,600	13,500	10,400	5,170	3,810	3,870	3,270	13,900	16,000
50	5,680	3,610	12,060	6,470	16,000	12,200	22,300	16,800	8,260	6,470	-	-	20,800	24,400
60	-	-	-	-	23,500	18,700	-	-	11,500	9,160	-	-	29,500	34,100
80	-	-	-	-	-	-	-	-	21,000	16,300	-	-	54,800	61,500

Note on dynamic load ratings

Dynamic load ratings are determined based on a total travel of 100,000 m. When based on 50,000 m, the value C in the table is multiplied by 1.26.

Static load safety factor

The static load safety factor S_0 is used to avoid unacceptable permanent deformations in the tracks and rolling elements. It is the ratio of the static load rating C_0 to the highest load $\mathsf{F}_{\mathsf{Omax}}$. The highest amplitude is decisive here, even if it only occurs briefly.

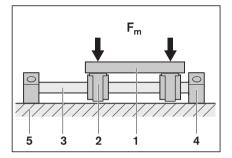
	S_0 = Static load safety factor	(-)
$S_0 = \frac{1}{E_0}$	$C_0 = $ Static load rating	(N)
' Omax	F _{0max} = Maximum static load	(N)

Static load safety factor recommendations for various operating conditions

	omax	
Operating conditions	S ₀	
Normal operating conditions	1 2	
Minor shocks and vibrations	2 4	
Moderate shocks and vibrations	3 5	
Severe shocks and vibrations	4 6	
Unknown load parameters	6 15	

Sample calculation

The vertical load of a slide on both shafts is 800 N.


It is assumed that the load is evenly distributed across the four linear bushings. The slide travels along a stroke length of 0.2 m with a stroke repetition rate $\rm n_s$ of 30 double strokes/min.

The service life L_{hrs} should be at least 8,000 hours.

The operating temperature is between 0 °C and 80 °C. Precision steel shafts with a minimal HRC of 60 and eLINE linear bushings should be used.

Operating conditions include minor shocks and vibrations.

Determining linear bushing size

- 1 Slides
- **2** Linear set (linear bushing in housing)
- 3 Precision steel shaft
- 4 Shaft support block
- **5** Mounting base

Since all four linear bushings are under the same load, the result is the load per linear bushing:

$$F_m = \frac{800 \text{ N}}{4} = 200 \text{ N}$$
 $F_m =$

Service life L as total travel in meters is calculated as follows:

	L	=	Nominal service life	(m)
$L = 2 x s x n_s x 60 x L_{hrs}$	L _{hrs}	=	Nominal service life	(hrs)
	s	=	Stroke length	(m)
$L = 2 \times 0.2 \times 30 \times 60 \times 8,000$	n _s	=	Stroke repetition rate	(rpm)
$L = 57.6 \times 10^5 m$				

The "Service life factor f_L " diagram shows a service life factor f_L of 0.25 for the calculated service life of 57.6 x 10^5 m.

A shaft hardness of HRC 60 in the "Diagram for hardness factor $f_{\rm H}$ " produces a hardness factor $f_{\rm H}$ of 1.

The temperature factor $f_t = 1$ (as per table)

Since there is no short stroke, the short stroke factor $f_s = 1$.

The required load rating C_{req} is then calculated:

$$C_{req} = \frac{F_m}{f_H \times f_t \times f_s \times f_L}$$
$$C_{req} = \frac{200}{1 \times 1 \times 1 \times 0.25}$$
$$C_{req} = 800 \text{ N}$$

The linear bushing with the next highest load rating would be R0658 252 44. Since the orientation of the linear bushings to load direction cannot be clearly defined, the minimum load ratings are used. Dynamic load rating $C_{min} = 950$ N.

Static load rating $C_{0min} = 500$ N.

Life expectancy calculation

Calculating nominal service life

Using the following formula for the selected linear bushing R0658 252 44:

$$L = \left(\frac{C}{F_{m}} x f_{H} x f_{t} x f_{s}\right)^{3} \cdot 10^{5} \qquad \qquad L = \text{Service life} \qquad (m)$$

The nominal service life can be calculated in meters using the following values:

$$\begin{array}{ccccc} \text{Dynamic load rating} & \text{C} &=& 950 \text{ N} \\ \text{Equivalent dynamic bearing load } F_m &=& 200 \text{ N} \\ \text{Hardness factor} & f_H &=& 1 \\ \text{Temperature factor} & f_t &=& 1 \\ \text{Short stroke factor} & f_s &=& 1 \\ \end{array} \\ \hline \begin{array}{c} \text{L} = \left(\frac{950}{200} \ \text{x 1 x 1 x 1} \right)^3 \text{x 10}^5 \\ \text{L} &=& 107 \ \text{x 10}^5 \text{ m} \end{array} \end{array} \right) \quad \text{L} &=& \text{Service life} \qquad (m) \\ \end{array}$$

The service life in hours is converted to operating hours using the following formula:

$$L_{hrs} = \frac{L}{2 \times s \times n_s \times 60}$$
$$L_{hrs} = \frac{107 \times 10^5}{2 \times 0.2 \times 30 \times 60}$$
$$L_{hrs} = 14,861 \text{ hrs}$$

This would cover the required minimum service life of 8,000 hours.

Calculating static load safety factor

Using the following formula for the selected linear bushing R0658 252 44:

	S ₀ = Static load safety factor	(-)
$S_0 = \frac{1}{F_0}$	$C_0 = $ Static load rating	(N)
Umax	$F_{0max} = Maximum$ static load	(N)

The static load safety factor can be calculated:

The operating conditions in the sample calculation require a static load safety factor S_0 of 2 ... 4 that is met by the calculated value.

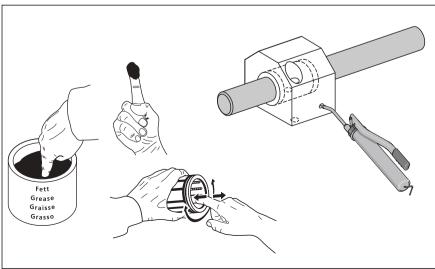
Bosch Rexroth AG 21

Lubrication

Note	The usual rolling bearing requirements apply for lubrication. Linear bushings come with a preservative that is compatible with all mineral oil-based lubricants. Oil or grease can be used. Grease is preferable since it helps create a seal and adheres better to the linear bushing. Linear bushings only have to be lubricated periodically. Please follow the lubricant manufacturer's instructions. Linear sets are designed for grease. When lubricating with oil, make sure all rolling elements have been reached.
Grease	For lubrication, we recommend a grease in compliance with DIN 51825: - K2K - KP2K (for higher loads)
	With Dynalub 510, Rexroth offers a lithium-based high-performance grease specially

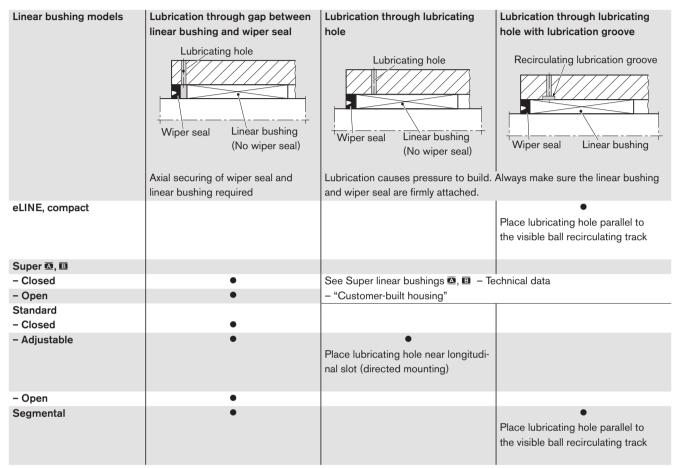
With Dynalub 510, Rexroth offers a lithium-based high-performance grease specially engineered for linear motion technology. It is highly water-resistant and anticorrosive. We recommend Dynalub 520 for miniature applications.

Material number	Description			Consistency	Temperature	Packaging unit	Area of
				classification	range		application
	Rexroth	DIN 51825	DIN 51826	under DIN 51818	(°C)		
R3416 037 00	Dynalub 510	KP2K-20		2	-20 to 80	1 x 400 g	Shaft $d \ge 8 \text{ mm}$
R0419 090 01	Dynalub 520		GP00K-20	00	-20 to 80	5 ml maintenance kit	Shaft d < 8 mm
R3416 043 00	Dynalub 520		GP00K-20	00	-20 to 80	1 x 400 g	Shaft d < 8 mm


Oil

When ease of movement is required, linear bushings can be lubricated with oil. The following table lists oils with different viscosity:

ISO viscosity	Kinematic viscosity at 40 °C	Application
under DIN 51519	(mm²/s)	
ISO VG 32	32	For minor friction and load
ISO VG 68	68	
ISO VG 100	100	
ISO VG 320	320	For low speed and/or high load
ISO VG 460	460	

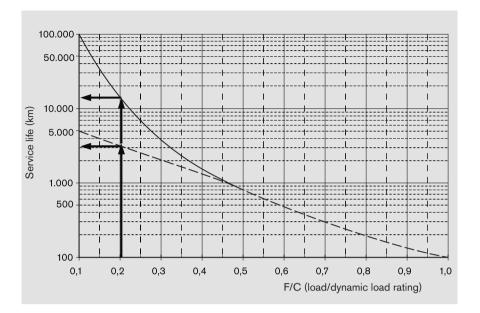

Initial lubrication

Before start-up, lubricate any linear bushings/linear sets that have not had initial lubrication.

Lubrication

Relubricating options for linear bushings

Notes:


Make sure open linear bushings are adequately secured. Relubricate during linear motion when possible. Lubricating hole and lubrication groove must be burr-free.

Lube nipples

Relubricatable linear sets come with lubricating holes for grease. Compatible lube nipples are listed in the following table:

d ₁	Hydraulic-type lube nipple	Funnel-type lube nipple
	DIN 71412 Form A	DIN 3405 Form A
(mm)	Material number	Material number
M6	R3417 002 02	R3417 001 05
M8x1	R3417 003 02	R3417 003 05
M10x1	R3417 009 02	-

Reference values for load-dependent relubrication

— — — Initial lubrication (no relubrication) ——— Regularly relubricated

Example

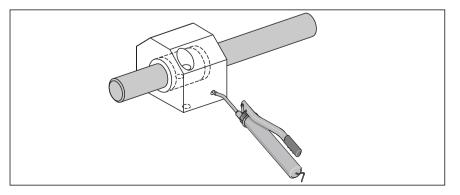
Factors

The diagram shows reference values for load-dependent relubrication.

If an eLINE linear bushing is loaded to 20% of the dynamic load rating, its service life with initial lubrication is 3,000 km under test conditions. When relubricated every 3,000 km, this service life can be extended to 12,500 km.

Relubricating or changing the grease of linear bearings depends on numerous factors.

Some of these are listed below:


- Load
- Speed
- Motion sequence
- Temperature

Short lubricating intervals given:

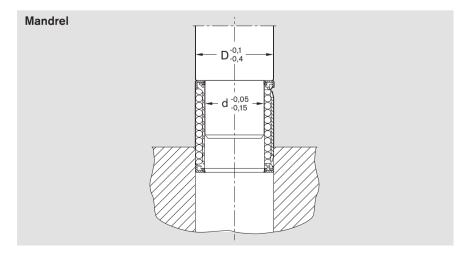
- Heavy load
- High speed (up to v_{max})
- Short stroke (stroke is less than three times the overall length of the linear bushing)
- Low lubricant durability

Relubricatable linear sets

For initial lubrication and relubrication through lubricating hole: Lubricate on shaft until lubricant emerges.

Installation

Parallelism


Installing the linear bushings

Guides with only one shaft should have two linear bushings. Guides with two shafts should have at least one shaft through two linear bushings. High standards must be placed regarding the differences in distance between two

shafts with linear bushings as well as how parallel the shafts and linear bearings are in order to avoid warping, thereby reducing service life and increased idling friction. The table contains guideline values for the maximum difference in distance **P** including parallelism offset in guides with linear bushings.

	Shaft	Ρ (μm)				
		Ø d Zero-clearance h6/H7				
		Standard super	Segmental	Standard super	Segmental compact	
		linear bushing	eLINE, compact	linear bushing	linear bushing	
	(mm)	-	linear bushing	_		
	3	3	-	9	-	
	4	3	-	9	-	
	5	4	-	12	-	
	8	4	7	12	15	
	10	4	7	12	15	
	12	5	8	13	17	
	14 16	5	8	13	17	
	20	7	12	13	20	
	25	9	15	17	23	
	30	9	15	17	23	
	40	11	18	19	25	
	50	13	22	21	28	
	60	16	_	24	-	
	80	22	-	30	-	
Shaft deflection	er tem Avoid i The se deflect connec	nsealed standard line peratures. This reduct ce buildup at negativ rvice life of self-supp tion and the resulting cting structures (hou	es the load rating. ve temperatures. orting linear bushir angular pressure v sing, etc.) and ther	ng guides is impact when the linear bus re is a longer distan	ed due to shaft hings have rigid ce between shaft	
Stainless steel linear bushings	supports (does not apply to super linear bearings , , and , up to 30 ft). Calculat- ing shaft deflection: see technical data on steel shafts. Stainless steels as per ISO 683-17/EN 10088. Parts in particularly critical, corrosive environments must be inspected under operating conditions. Use suitable preserva- tives and lubricants.					
Housing bore	The operating clearance of all linear bushings can be influenced by the choice of shaft and bore tolerance (exception: closed standard linear bushings). The following applies for an h6 shaft: Normal DIN operating clearance calls for housing bore tolerance H7. For smaller larger bores, the operating clearance changes accordingly. We recommend bore erance K7 for minimal-clearance guides. Bore tolerance M7 is designed for mode preload (preload reduces the service life of linear bushings and shafts). eLINE line bushings with a bore tolerance of H7 produce minimal-clearance guides.			ings). H7. For smaller and ecommend bore tol- esigned for moderate hafts). eLINE linear		

Radial clearance	The radial clearance values for linear bushings and linear sets shown in the table have been determined from statistics and correspond to values expected in practice.
Adjusting radial clearance	The radial clearance of a linear bushing on zero-clearance guides must be reduced using the adjusting screw on the housing until there is slight resistance when rotating the shaft. Secure the adjusting screw for applications where vibrations are present. The radial clearance of closed standard linear bushings cannot be adjusted.
Adjusting preload	For preloading, the aforementioned adjustment is made using an adjustment shaft that is weaker by the degree of preload.
Vertical dimension	The linear set tables show tolerances for the vertical dimension "H". These tolerances have been determined from statistics and correspond to values expected in practice.
Securing	See "Technical data" for the various linear bushings.
Notes on mounting	The housing bore must be chamfered. Small linear bushings (except eLINE and com- pact linear bushings with a shaft diameter of 12 or higher) can be mounted manually. For larger diameters as well as eLINE and compact linear bushings, a mandrel should be used. While doing so, make sure that the press-fit force is not transmitted through wiper seals and steel retainers (standard linear bushings), since this can damage the bearing races. If eLINE and compact linear bushings are slightly skewed when initially installing them into the housing bore, they will align themselves as they are pressed in. Removal and realignment are not necessary. The ends of the shaft must be chamfered. Make sure the linear bearing is not skewed when pressing it onto the shaft. Striking linear bushings with wiper seals over sharp edges on the shaft since the sealing lips will be damaged. See "Installation" for each linear bushing model for notes on installing torque-resistant linear bushings.

Tolerance tables

Inner dimensions

	ninal	Dimen															
	range		0.001 m										1		1		
(mm)	G7	H5	H6	H7	H8	H11	H12	H13	JS6	JS7	JS14	K6	K7	M6	M7	P9
>	3	+16	+5	+8	+12	+18	+75	+120	+180	+4	+6	+150	+2	+3	-1	0	-12
\leq	6	+4	0	0	0	0	0	0	0	-4	-6	-150	-6	-9	-9	-12	-42
>	6	+20	+6	+9	+15	+22	+90	+150	+220	+4.5	+7.5	+180	+2	+5	-3	0	-15
\leq	10	+5	0	0	0	0	0	0	0	-4.5	-7.5	-180	-7	-10	-12	-15	-51
>	10	+24	+8	+11	+18	+27	+110	+180	+270	+5.5	+9	+215	+2	+6	-4	0	-18
\leq	18	+6	0	0	0	0	0	0	0	-5.5	-9	-215	-9	-12	-15	-18	-61
>	18	+28	+9	+13	+21	+33	+130	+210	+330	+6.5	+10.5	+260	+2	+6	-4	0	-22
\leq	30	+7	0	0	0	0	0	0	0	-6.5	-10.5	-260	-11	-15	-17	-21	-74
>	30	+34	+11	+16	+25	+39	+160	+250	+390	+8	+12.5	+310	+3	+7	-4	0	-26
\leq	50	+9	0	0	0	0	0	0	0	-8	-12.5	-310	-13	-18	-20	-25	-88
>	50	+40	+13	+19	+30	+46	+190	+300	+460	+9.5	+15	+370	+4	+9	-5	0	-32
\leq	80	+10	0	0	0	0	0	0	0	-9.5	-15	-370	-15	-21	-24	-30	-106
>	80	+47	+15	+22	+35	+54	+220	+350	+540	+11	+17.5	+435	+4	+10	-6	0	-37
\leq	120	+12	0	0	0	0	0	0	0	-11	-17.5	-435	-18	-25	-28	-35	-124
>	120	+54	+18	+25	+40	+63	+250	+400	+630	+12.5	+20	+500	+4	+12	-8	0	-43
\leq	180	+14	0	0	0	0	0	0	0	-12.5	-20	-500	-21	-28	-33	-40	-143
>	180	+61	+20	+29	+46	+72	+290	+460	+720	+14.5	+23	+575	+5	+13	-8	0	-50
\leq	250	+15	0	0	0	0	0	0	0	-14.5	-23	-575	-24	-33	-37	-46	-165

Outer dimensions

Nomir	nal	Dimens	sions														
size ra	ange	(μm) =	0.001 m	m													
(mm)		g7	h5	h6	h7	h8	h11	h12	h13	js6	js7	js14	k6	k7	m6	m7	p9
>	3	-4	0	0	0	0	0	0	0	+4	+6	+150	+9	+13	+12	+16	+42
\leq	6	-16	-5	-8	-12	-18	-75	-120	-180	-4	-6	-150	+1	+1	+4	+4	+12
>	6	-5	0	0	0	0	0	0	0	+4.5	+7.5	+180	+10	+16	+15	+21	+51
\leq	10	-20	-6	-9	-15	-22	-90	-150	-220	-4.5	-7.5	-180	+1	+1	+6	+6	+15
>	10	-6	0	0	0	0	0	0	0	+5.5	+9	+215	+12	+19	+18	+25	+61
\leq	18	-24	-8	-11	-18	-27	-110	-180	-270	-5.5	-9	-215	+1	+1	+7	+7	+18
>	18	-7	0	0	0	0	0	0	0	+6.5	+10.5	+260	+15	+23	+21	+29	-
\leq	30	-28	-9	-13	-21	-33	-130	-210	-330	-6.5	-10.5	-260	+2	+2	+8	+8	
>	30	-9	0	0	0	0	0	0	0	+8	+12.5	+310	+18	+27	+25	+34	-
\leq	50	-34	-11	-16	-25	-39	-160	-250	-390	-8	-12.5	-310	+2	+2	+9	+9	
>	50	-10	0	0	0	0	0	0	0	+9.5	+15	+370	+21	+32	+30	+41	-
\leq	80	-40	-13	-19	-30	-46	-190	-300	-460	-9.5	-15	-370	+2	+2	+11	+11	
>	80	-12	0	0	0	0	0	0	0	+11	+17.5	+435	+25	+38	+35	+48	-
\leq	120	-47	-15	-22	-35	-54	-220	-350	-540	-11	-17.5	-435	+3	+3	+13	+13	
>	120	-14	0	0	0	0	0	0	0	+12.5	+20	+500	+28	+43	+40	+55	-
\leq	180	-54	-18	-25	-40	-63	-250	-400	-630	-12.5	-20	-500	+3	+3	+15	+15	
>	180	-15	0	0	0	0	0	0	0	+14.5	+23	+575	+33	+50	+46	+63	-
\leq	250	-61	-20	-29	-46	-72	-290	-460	-720	-14.5	-23	-575	+4	+4	+17	+17	

eLINE and compact linear bushings

Product overview

The benefits

- Low-cost linear bushing for general requirements
- Small outer dimensions and highly compact construction
- Integrated metal retainer about 0.1 mm larger than outer diameter (shaft diameters 12 to 50) for secure fit in housing bore
- Easy installation: just press on no additional securing needed
- High load rating and long service life due to hardened segmental load-bearing plates with ball conformity in the track.
- High travel speed (5 m/s)
- Many pockets acting as lubricant reservoirs for extended lubrication intervals or lubrication for life.
- Pockets also collect any dirt that may have worked its way in to prevent the linear bushing from jamming.
- Integrated wiper seals, top wiper seals or no wiper seals
- Also available in stainless steel for medical, chemistry and food industries
- Linear sets with aluminum housing
- Lubricated for life (eLINE)

R0658 page 32

Shaft diameters 8 and 10

Shaft diameters 12 to 50

Explanation of short product name

Sample linear bushing:

eLINE linear bushing KBC-12-DD-RT-NR-G

Definition of codes			KB	C 12	DD	RT	NR	G
Туре	Linear bushing	= KB						
Series	Compact	= C						
Shaft diameter		= 12						
Seals	With two seals	= DD			_			
	1 seal	= D						
	No seals	=						
Radial clearance	Reduced radial clearance (eLINE linear bushing)	= RT				-		
	Normal radial clearance (compact linear bushing)	=						
Linear bushing version	Stainless steel	= NR						
	Normal	=						
Linear bushing lubrication	Greased	= G						
	Not greased	=						

R1028 page 34

Adjustable

R1029 page 36

Tandem closed

Sample linear set:

Linear set with eLINE linear bushing LSACET-12-DD-RT-NR-G

Definition of codes				L	s	A C	ET	12	DD	RT	NR	G
Туре	Linear set	=	LS									
Material (housing)	Aluminum	=	А									
Series	Compact	=	С			_						
Housing	Adjustable	=	E				_					
	Normal	=										
	Tandem	=	Т									
Shaft diameter		=	12					-				
Seals	With two seals	=	DD						_			
	No seals	=										
Radial clearance	Reduced radial clearance (eLINE linear bushing)	=	RT									
	Normal radial clearance (compact linear bushing)	=										
Linear bushing version	Stainless steel	=	NR								-	
	Normal	=										
Linear bushing lubrication	Greased	=	G									-
	Not greased	=										

eLINE and compact linear bushings

Technical data, installation

Please observe general technical principles and follow the lubricating and installation instructions.

Seal

The sealed version contains integrated seals. Separate wiper seals are also available (no securing necessary).

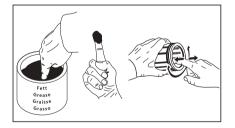
Friction

Speed

The friction coefficients μ of the unsealed linear bushings are 0.001 - 0.004 when lubricated with oil.

The friction coefficient is lowest under heavy load, but can still be above the specified value even under low load.

The table shows the friction generated by linear bushings with integrated seals on both ends when not under radial load. They depend on speed and lubrication.


Shaft Ø d	Breakaway force ¹⁾	Friction ¹⁾									
(mm)	Reference	Reference									
	value (N)	value (N)									
8	0.8	0.4									
10	1.0	0.5									
12	1.5	0.8									
14	1.8	0.9									
16	2.0	1.0									
20	3.0	1.5									
25	4.5	2.0									
30	6.0	2.5									
40	8.0	3.0									
50	10.0	4.0									
$v_{max} = 5 m$	$v_{max} = 5 \text{ m/s}$										

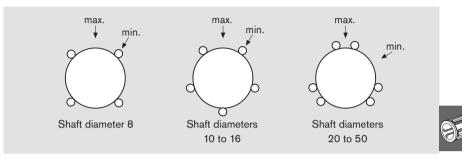
1) When separate wiper seals are used, the values must be multiplied by 1.5.

Acceleration	$a_{max} = 150 \text{ m/s}^2$
Operating temperature	-10 °C to 80 °C
Initial lubrication	Compact linear b initial lubrication. before use, see " section "Lubricat eLINE linear bus lubrication. Service life data cation and relubr
Installation	Install the linear bushings

rication. Grease linear bushings se, see "Initial lubrication" Lubrication" on page 21. ear bushings come with initial n. ife data is based on initial lubrid relubricated linear bushings.

linear bushings do not have an

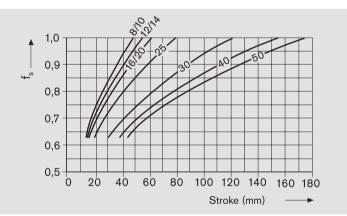
e linear bushings using an arbor press (see "Installation instructions" below). If linear bushings are slightly skewed when initially installing them into the housing bore, they will align themselves as they are pressed in. The linear bushing does not have to be removed and realigned.


Securing

Shaft diameters 8 and 10: The plastic outer sleeve is oversized. Additional securing is required for vibrations or high acceleration. Shaft diameters 12 to 50: The outer diameter of the metal retainer is oversized. No additional securing needed (bore length \geq C).

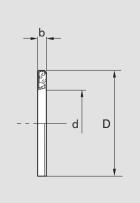
Effect of load direction on load rating

Depending on installation, the listed load ratings should be chosen at the minimum or maximum position and should be based on the calculations.


If the load direction is clearly defined and the linear bushings can be installed at the maximum position, the load ratings C_{max} (dynamic load rating) and C_{0max} (static load rating) can be used. If directed installation is not possible or the load direction is not defined, the minimum load ratings must be used.

Reduced load rating with short stroke

When short stroke is present, the service life of the shaft is less than that of the linear bushing.


The load ratings C in the tables must therefore be multiplied by the factor f_S.

Wiper seals Design

- Galvanized metal case
- Elastomer wiper seal

Shaft Ø d	Material number	Dime sions (mm)	s	Weight (g)
(mm)	Wiper seals	D ¹⁾	b	
12	R1331 812 10	19	3	1.1
16	R1331 816 10	24	3	1.5
20	R1331 820 10	28	4	2.4
25	R1331 825 10	35	4	4.4
30	R1331 830 10	40	4	5.0
40	R1331 840 10	52	5	5.0
50	R1331 850 10	62	5	10.0

Outer diameter D is oversized by about
 0.1 mm. No additional securing is needed.

eLINE and compact linear bushings

eLINE linear bushings, R0658

Design

- POM ball retainer
- Integrated wiper seals
- Balls made of rolling bearing steel
- Hardened segmental steel plates
- Metal retainers (shaft diameter 12 and higher)
- Reduced radial clearance for applications where minimal-clearance bearings with an H7 bore are desired
- Initial lubrication with Dynalub 510
- Stainless steel version also available: Segmental steel plates made of 1.4037 balls made of 1.3541

Chaff			Weight
Shaft	Material number without wiper	rseals	Weight
Ød	Compact linear bushings		
(mm)	Normal	Stainless	
	КВС	KBCNR	(kg)
8	R0658 008 00	R0658 008 30	0.011
10	R0658 010 00	R0658 010 30	0.014
12	R0658 012 00	R0658 012 30	0.016
14	R0658 014 00	R0658 014 30	0.018
16	R0658 016 00	R0658 016 30	0.025
20	R0658 020 00	R0658 020 30	0.028
25	R0658 025 00	R0658 025 30	0.058
30	R0658 030 00	R0658 030 30	0.080
40	R0658 040 00	R0658 040 30	0.140
50	R0658 050 00	R0658 050 30	0.170

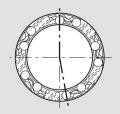
Shaft	Material number w	vith two integrated wip	er seals		Weight
Ød	eLINE linear bush	ings	Compact linear	bushings ¹⁾	
	(reduced radial cle	arance,	(Normal radial c		
	prelubricated)		prelubricated)		
	KBCDD-RT-G	KBCDD-RT-NR-G	KBCDD	KBCDD-NR	
(mm)	Normal	Stainless	Normal	Stainless	(kg)
8	R0658 262 44	R0658 262 34	R0658 208 40	R0658 208 30	0.011
10	R0658 261 44	R0658 261 34	R0658 210 40	R0658 210 30	0.014
12	R0658 251 44	R0658 251 34	R0658 212 40	R0658 212 30	0.016
14	-	-	R0658 214 40	R0658 214 30	0.018
16	R0658 252 44	R0658 252 34	R0658 216 40	R0658 216 30	0.025
20	R0658 253 44	R0658 253 34	R0658 220 40	R0658 220 30	0.028
25	R0658 254 44	R0658 254 34	R0658 225 40	R0658 225 30	0.058
30	R0658 255 44	R0658 255 34	R0658 230 40	R0658 230 30	0.080
40	R0658 256 44	R0658 256 34	R0658 240 40	R0658 240 30	0.140
50	-	-	R0658 250 40	R0658 250 30	0.170

¹⁾ Integrated seal: R0658 1...40 or R0658 1 to 30

Explanation of sample short product name

KB	С	12	DD	RT	G
Linear bushing	Compact	Ø 12	With two seals	Reduced radial clearance	Greased

See page 28 for more information on short product names.


Compact linear bushings, R0658

Design

- Normal radial clearance
- Not greased
- Optional integrated wiper seals

Dimensions

Dimens	sions (m	ım)	Rows of	Radial cleara Shaft/bore	nce (μm)	Load ratir Normal	-			Stainless			
			balls				dyn. C		stat. C ₀		dyn. C		stat. C ₀
Ød	D	С		eLINE	Compact	min.	max.	min.	max.	min.	max.	min.	max.
		±0.2		h6/H7	h6/H7								
8	15	24	4	+5	+25	500	580	350	500	350	410	280	400
				-18	+2								
10	17	26	5	+5	+25	600	720	410	600	420	500	330	480
				-18	+2								
12	19	28	5	+8	+32	730	870	420	620	510	610	340	500
				-24	0								
14	21	28	5	_	+32	760	900	430	630	530	630	340	500
					0								
16	24	30	5	+8	+32	950	1,120	500	730	660	780	400	580
				-24	0								
20	28	30	6	+9	+33	1,120	1,410	610	900	780	990	480	720
				-25	-1								
25	35	40	6	+12	+36	2,330	2,930	1,310	1,950	1,630	2,050	1,050	1,560
				-24	0								
30	40	50	6	+12	+36	3,060	3,250	1,880	2,790	2,140	2,700	1,510	2,230
				-24	0								
40	52	60	6	+18	+42	5,040	6,380	3,140	4,650	3,520	4,470	2,510	3,720
				-25	-1								
50	62	70	6	-	+42	5,680	7,180	3,610	5,350	3,970	5,030	2,890	4,280
					-1								

The dynamic load ratings are based on total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26. eLINE and compact linear sets

eLINE linear sets, R1027 Closed, normal or stainless

Design

- eLINE linear bushing
- Lightweight precision housing (aluminum)
- Integrated wiper seals
- Reduced radial clearance
- Initial lubrication with Dynalub 510
- Also available in stainless steel under KBC-NR

Compact linear sets, R1027 Closed, normal or stainless

Design

- Compact linear bushing
- Lightweight precision housing (aluminum)
- Integrated wiper seals
- Normal radial clearance
- Initial lubrication with Dynalub 510
- Also available in stainless steel under KBC-NR

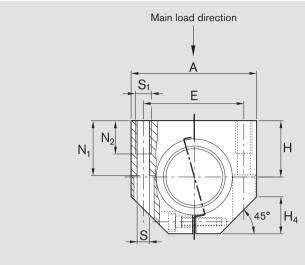
Compact linear sets, R1028 Adjustable, normal

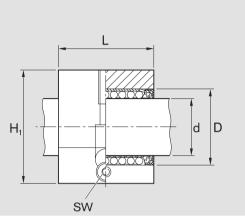
Design

- Compact linear bushing
- Lightweight precision housing (aluminum)
- Integrated wiper seals
- Set to zero clearance
- Initial lubrication with Dynalub 510

Shaft	Material number with eLINE linear	set	Weight
Ød	Reduced radial clearance, prelubric		
	Normal		
(mm)	LSACDD-RT-G	(kg)	
12	R1027 251 44	R1027 251 34	0.08
16	R1027 252 44	R1027 252 34	0.11
20	R1027 253 44	R1027 253 34	0.15
25	R1027 254 44	R1027 254 34	0.27
30	R1027 255 44	R1027 255 34	0.40
40	R1027 256 44	R1027 256 34	0.75

Shaft Ø d	Material number with compact linear set Prelubricated				
	Normal	Stainless			
(mm)	LSACDD-G	LSACDD-NR-G	(kg)		
12	R1027 212 44	R1027 212 34	0.08		
16	R1027 216 44	R1027 216 34	0.11		
20	R1027 220 44	R1027 220 34	0.15		
25	R1027 225 44	R1027 225 34	0.27		
30	R1027 230 44	R1027 230 34	0.40		
40	R1027 240 44	R1027 240 34	0.75		
50	R1027 250 44	R1027 250 34	1.20		


Shaft Ø d	Material number with compact linear set Normal, prelubricated							
(mm)	LSACEDD-G	(kg)						
12	R1028 212 44	0.08						
16	R1028 216 44	0.11						
20	R1028 220 44	0.15						
25	R1028 225 44	0.27						
30	R1028 230 44	0.40						
40	R1028 240 44	0.75						
50	R1028 250 44	1.20						


Explanation of sample short product name

LS	А	С	12	DD	RT	NR	G
Linear set	Aluminum	Compact	Ø 12	With two seals	Reduced radial clearance	Stainless steel	Greased

See page 28 for more information on short product names.

Dimensions

Dimensions (mm)

Ød	D	н	H ₁	A	L	E ±0.15	S ¹⁾	S ₁	N ₁	N ₂	H ₄	SW
12	19	17	33	40	28	29	4.3	M5	16	11	11	2.5
16	24	19	38	45	30	34	4.3	M5	18	11	13	2.5
20	28	23	45	53	30	40	5.3	M6	22	13	15	3.0
25	35	27	54	62	40	48	6.6	M8	26	18	17	4.0
30	40	30	60	67	50	53	6.6	M8	29	18	19	4.0
40	52	39	76	87	60	69	8.4	M10	38	22	24	5.0
50	62	47	92	103	70	82	10.5	M12	46	26	30	6.0

Ød	Radial clea	arance (μm)	Tolerance	for H ²) (μm)	Load ratings ³⁾ (N)			
	R1027	R1027	R1028	R1027	R1028	Normal		Stainless	
	eLINE,	Compact							
	compact								
(mm)	h6	h6				dyn. C	stat. C ₀	dyn. C	stat. C ₀
12	+8	+32	and	+24	+12	810	490	570	390
	-24	0	t) a	0	-12				
16	+8	+32	<u> </u>	+24	+12	1,050	570	730	460
	-24	0	/er	0	-12				
20	+9	+33	shaft (lower limit)	+25	+13	1,410	900	990	720
	-25	-1	aft	0	-12				
25	+12	+36	sha	+25	+13	2,930	1,950	2,050	1,560
	-24	0	h5 Se	0	-12				
30	+12	+36	mped to h clearance	+25	+13	3,850	2,790	2,700	2,230
	-24	0	pec	0	-12				
40	+18	+42		+26	+14	6,380	4,650	4,470	3,720
	-25	-1	s cl	0	-12				
50	+42	+42	Comes cla set to zero	+14	+14	7,180	5,350	5,030	4,280
	-1	-1	Co	-12	-12				

- 1) ISO 4762-8.8 fastening bolts.
- 2) In relation to Ø d.
- The load ratings apply for the main load direction. If the load direction is not the main load direction, the load ratings must be multiplied by the following factors.

Ø d 12 and 16:	$f = 0.90, f_0 = 0.86$
Ø d 20 to 50:	$f = 0.79, f_0 = 0.68$

The dynamic load ratings are based on a total travel of 100,000 m.

When based on 50,000 m, the C values in the table are multiplied by 1.26.

eLINE and compact linear sets

eLINE linear sets, R1029 Tandem Closed, normal or stainless

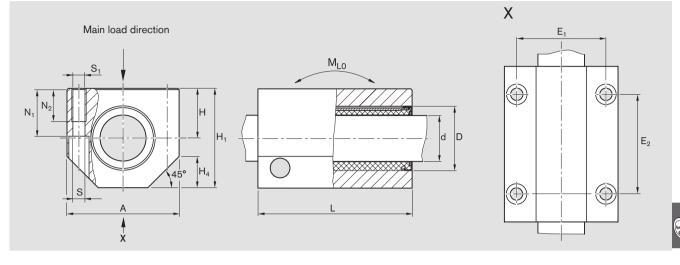
Design

- Two eLINE linear bushings
- Lightweight precision tandem housing (aluminum)
- Integrated wiper seals
- Reduced radial clearance
- Initial lubrication with Dynalub 510
- Also available in stainless steel under KBC-NR

Compact linear sets, R1029 Tandem Closed, normal or stainless

Design

- Two compact linear bushings
- Lightweight precision tandem housing (aluminum)
- Integrated wiper seals
- Normal radial clearance
- Initial lubrication with Dynalub 510
- Also available in stainless steel under KBC-NR


Shaft	Material number with eLINE linear set					
øu	Reduced radial clearance, prelubricated Normal Stainless					
(mm)	LSACTDD-RT-G	LSACTDD-RT-NR-G	(kg)			
12	R1029 251 44	R1029 251 34	0.17			
16	R1029 252 44	R1029 252 34	0.24			
20	R1029 253 44	R1029 253 34	0.31			
25	R1029 254 44	R1029 254 34	0.57			
30	R1029 255 44	R1029 255 34	0.80			
40	R1029 256 44	R1029 256 34	1.54			

Shaft	Material number with compact linear set				
Ød	Prelubricated				
	Normal	Stainless			
(mm)	LSACTDD-G	LSACTDD-NR-G	(kg)		
12	R1029 212 44	R1029 212 34	0.17		
16	R1029 216 44	R1029 216 34	0.24		
20	R1029 220 44	R1029 220 34	0.31		
25	R1029 225 44	R1029 225 34	0.57		
30	R1029 230 44	R1029 230 34	0.80		
40	R1029 240 44	R1029 240 34	1.54		
50	R1029 250 44	R1029 250 34	2.45		

Explanation of sample short product name

LS	А	С	Т	12	DD	RT	NR	G
Linear set	Aluminum	Compact	Tandem	Ø 12	With two seals	Reduced radial clearance	Stainless steel	Greased

See page 28 for more information on short product names.

Dimensions (mm)

Dimension	13 ()											
Ød	D	Н	H ₁	A	L	E ₁	E ₂	S ¹⁾	S ₁	N ₁	N_2	H ₄
						±0.15	±0.15					
12	19	17	33	40	60	29	35	4.3	M5	16	11	11
16	24	19	38	45	65	34	40	4.3	M5	18	11	13
20	28	23	45	53	65	40	45	5.3	M6	22	13	15
25	35	27	54	62	85	48	55	6.6	M8	26	18	17
30	40	30	60	67	105	53	70	6.6	M8	29	18	19
40	52	39	76	87	125	69	85	8.4	M10	38	22	24
50	62	47	92	103	145	82	100	10.5	M12	46	26	30

Ød	Radial of	learance	Tolerance	Load rat	tings ³⁾ (N)		Linear torque
	(μm)		for H ²⁾	Normal		Stainles	s	(Nm)
	Shaft							stat.
	R1029	R1029						
	eLINE	Compact						
(mm)	h6	h6	(μm)	dyn. C	stat. C ₀	dyn. C	stat. C ₀	M _{Lo}
12	+8	+32	+24	1,310	980	920	780	13
	-24	0	0					
16	+8	+32	+24	1,700	1,140	1,180	920	18
	-24	0	0					
20	+9	+33	+25	2,290	1,800	1,610	1,440	21
	-25	-1	0					
25	+12	+36	+25	4,760	3,900	3,330	3,120	59
	-24	0	0					
30	+12	+36	+25	6,250	5,580	4,385	4,460	103
	-24	0	0					
40	+18	+42	+26	10,360	9,300	7,260	7,440	204
	-25	-1	0					
50		+42	+14	11,660	10,700	8,170	8,560	271
		-1	-12					

1) ISO 4762-8.8 fastening bolts.

2) In relation to Ø d.

 The load ratings apply for the main load direction. If the load direction is not the main load direction, the load ratings must be multiplied by the following factors.

Ø d 12 and 16:
$$f = 0.90, f_0 = 0.86$$

Ø d 20 to 50: $f = 0.79, f_0 = 0.68$

The dynamic load ratings are based on a total travel of 100,000 m.

When based on 50,000 m, the C values in the table are multiplied by 1.26.

Super linear bushings
and

Product overview

The benefits

- Low-cost linear bushing for high requirements
- Steel bearing plates with machined ball guide grooves and optimized ball lead-in chamfers for unmatched smooth travel and long service life
- Super linear bushing Scompensates for shaft deflection and misalignment.
- Super linear bushing i without misalignment compensation for transferring lower pitching torque along the axial direction
- High travel speed (up to 5 m/s)
- Integrated wiper seals, top wiper seals or no wiper seals
- Open linear bushing on fully supported shafts for applications where other linear guides tend to warp due to imprecise substructures.
- Optional linear seal for open linear bushing
- Linear sets with aluminum or cast iron housing

Super linear bushings 🖸 and 🗉

Optional misalignment compensation

Super 🖸 (closed)

Super 🖸 (open)

Super
(closed)

Super 🗉 (open)

Sample linear bushing:

Super linear bushing KBA-O-20-DD

Definition of codes				KB	Α	0	20	DD
Туре	Linear bushing	=	KB					
Series	Super 🖾 (with misalignment compensation)	=	A					
	Super 🗉 (no misalignment compensation)	=	В					
Form	Closed	=						
	Open	=	0					
Shaft diameter		=	20					
Seals	Fully sealed	=	VD					`
	With two seals	=	DD					
	1 seal	=	D					
	No seals	=						

LSA-OE-B-20-DD-NR

	LSA-OE-B-20-DD-NR							_		
Definition of codes				LS	5 A	0	E	B	20	DD
Туре	Linear set	=	LS							
Material (housing) (linear set only)	Aluminum	=	А		_					
	Cast iron	=	G							
	Steel	=	S							
Form	Closed	=				_				
	Open	=	0							
	Side opening	=	S							
	Adjustable	=	Е							
	Flanged	=	F							
	Tandem	=	Т							
Series	Super 🖸 (with misalignment compensation)	=	А							
	Super 🗉 (no misalignment compensation)	=	В							
Shaft diameter		=	20							
Seals	With two seals	=	DD							
	No seals	=								

Super linear bushings and

Technical data

Please observe general technical principles and follow the lubricating and installation instructions.

Super linear bushings come both with integrated and separate wiper seals. The separate wiper seals are specially designed for high contamination environments. An additional seal (e.g., boot, extendable cover) is necessary for extremely high contamination environments.

The open super linear bushings can also come fully sealed (with linear seal), however this increases friction.

Friction

Seal

The friction coefficients μ of the unsealed super linear bushings are 0.001 – 0.0025 when lubricated with oil.

The friction coefficient is lowest under high load. It can also be greater than the indicated value under low loads. The table shows the friction generated by super linear bushings with integrated wiper seals on both ends when not under radial load.

They depend on speed and lubrication.

Shaft Ø d	Closed and open with integrated wipe	r seals	Open, fully sealed	
	Breakaway force ¹⁾	Friction ¹⁾	Breakaway force	Friction
(mm)	Reference value	Reference value	Reference value	Reference value
	(N)	(N)	(N)	(N)
10	1.0	0.5	-	-
12	1.5	0.8	6	3
16	2.0	1.0	9	4
20	3.0	1.5	10	5
25	4.5	2.0	14	6
30	6.0	2.5	18	8
40	8.0	3.0	24	10
50	10.0	4.0	30	12

1) When separate wiper seals are used, the values must be multiplied by 1.5.

$v_{max} = 3 \text{ m/s}$

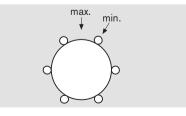
Speeds up to 5 m/s possible. Service life is limited by increased wear to plastic parts. Tests have shown total travel from 50 to 100 x 10⁵ m without failure.

Acceleration

Speed

 $a_{max} = 150 \text{ m/s}^2$

-10 °C to 80 °C

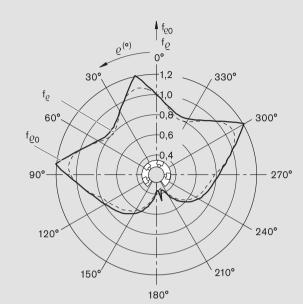

Operating temperature

Effect of load direction On the load rating of closed super linear bushings

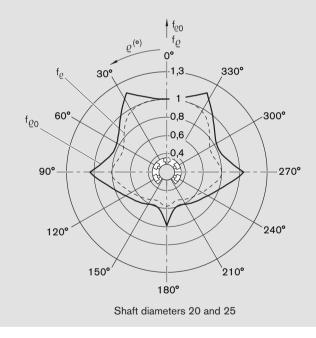
Depending on installation, the listed load ratings should be chosen at the minimum or maximum position and should be based on the calculations.

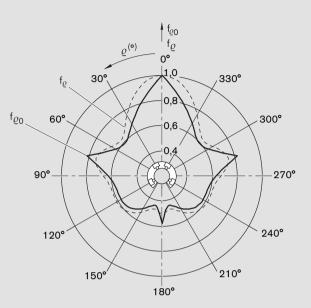
If the load direction is clearly defined and the super linear bushings can be installed at the maximum position, the load ratings C_{max} (dynamic load rating) and C_{0max} (static load rating) can be used.

If directed installation is not possible or the load direction is not defined, the minimum load ratings must be used.

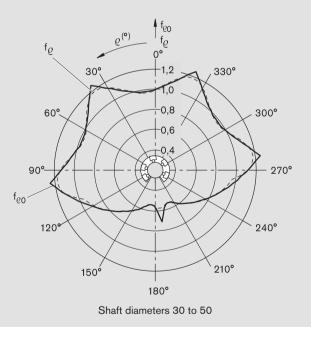


On the load rating of open super linear bushings

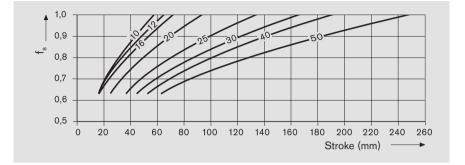

The load ratings C and C₀ apply for the main load direction $\varrho = 0^{\circ}$. For all other load directions, the load ratings must be multiplied by the factors f_{ϱ} (dynamic load rating) or f_{ϱ_0} (static load rating C₀).


Installing specific super linear bushings can prevent a reduction in load rating (see linear set with side opening).

Load direction factors



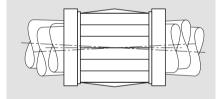
Shaft diameter 16


Super linear bushings
and
and

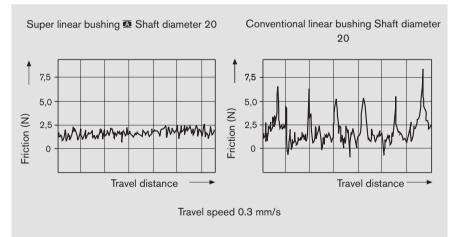
Technical data

Reduced load rating with short stroke

When short stroke is present, the service life of the shaft is less than that of the super linear bushing.


The load ratings C in the tables must therefore be multiplied by the factor f_S.

Reduced load rating with heavy load


If the load F on a super linear bushing
is more than 0.5 x C, the dynamic load rating C decreases.

Super linear bushing misalignment compensation

The misalignment compensation in the steel bearing plates and machined ball guide grooves ensure guieter travel. The flow chart shows a comparison with a conventional

The misalignment compensation in the steel bearing plates and machined ball guide grooves ensure quieter travel. The flow chart shows a comparison with a conventional linear bushing. The example is based on a load of 800 N and a misalignment of about 8 ft (caused by shaft deflection).

Due to misalignment compensation, two super linear bushings must be used on at least one of the shafts in the guide.

Operating under difficult conditions

We recommend the following linear bushing models for applications with water-based coolants/lubricants:

- Standard linear bushings

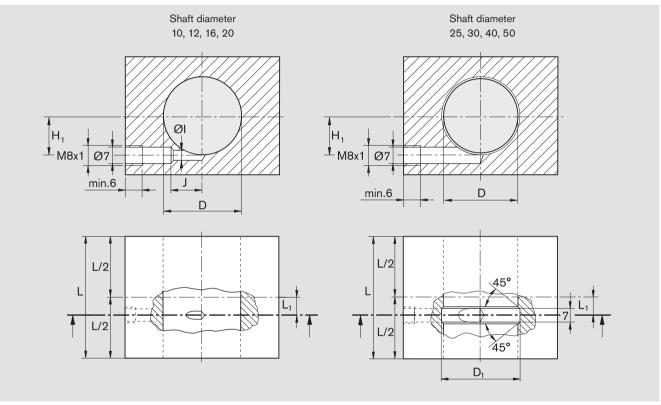
For constantly humid or damp conditions (steam, condensation), we recommend the following corrosion-resistant linear bushing models with stainless steel parts in accordance with ISO683-17/EN 10088:

- Segmental linear bushing (stainless)
- eLINE linear bushing (stainless)
- Compact linear bushing (stainless)
- Standard linear bushing (stainless)

Installation

Radial clearance	The radial clearance values shown in the table have been determined from statistics and correspond to values expected in practice.
Adjusting radial clearance	The radial clearance of all linear bushings can be adjusted. If, e.g., a zero-clearance guide is needed, the radial clearance of the linear bushing must be reduced using the adjusting screw on the housing (see also linear sets) until there is slight resistance when rotating the shaft. Secure the adjusting screw for applications where vibrations are present.
Adjusting preload	For preloading, the aforementioned adjustment is made using an adjustment shaft that is weaker by the degree of preload.
Initial lubrication	Super linear bushings and a do not come with initial lubrication. Grease linear bushings before use, see "Initial lubrication" Section "Lubrication" on page 21. Service life data is based on initial lubrication. Grease linear bushings.

Super linear bushings
and
and


Customer-built housings

Recommended tolerance for housing bore D:

- H7 Clearance, for all normal applications
- K7 Minimal clearance, for applications with alternating loads
- M7 Moderate preload, for applications with vibrations or high acceleration

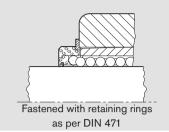
Please note the radial clearances (shaft/bore) in each of the tables.

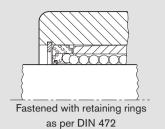
Lubrication groove and lubricating hole for super linear bushings \square , \square , closed, with top wiper seals

The lubricating channels shown are designed for grease, see Section "Lubrication" on page 21.

Material number		Shaft	Lubricant q	t y. 1) (cm ³)	Dimensions (mm)							
Super linear bus	Super linear bushings Wiper seals			Prelubrica-	Relubrica-							
ً	B		(mm)	tion	tion	L ₁	H ₁	L (min)	D	D ₁	ØI	J
R0670 010 00	R0672 010 00	R1331 610 00	10	1.3	0.4	7.5	6.0	36	19	-	3	11.5
R0670 012 00	R0672 012 00	R1331 612 00	12	1.6	0.5	9.0	8.0	39	22	-	5	13.0
R0670 016 00	R0672 016 00	R1331 616 00	16	1.6	0.5	10.0	12.0	43	26	-	5	18.0
R0670 020 00	R0672 020 00	R1331 620 00	20	3.5	1.1	13.5	15.0	54	32	-	2	15.5
R0670 025 00	R0672 025 00	R1331 625 00	25	5.5	1.7	18.5	20.0	67	40	42	-	-
R0670 030 00	R0672 030 00	R1331 630 00	30	8.0	2.4	23.5	23.5	79	47	49	-	-
R0670 040 00	R0672 040 00	R1331 640 00	40	14.0	4.2	27.5	31.0	91	62	66	-	-
R0670 050 00	R0672 050 00	R1331 650 00	50	24.0	7.2	34.5	37.5	113	75	79	-	-

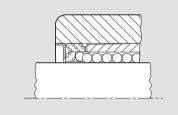
1) Max. fill volume for Rexroth linear bushings in housing.


2) The specified initial lubrication and relubrication fill volumes refer to the linear sets R1035/R1036.


Customer-built housings with other lube port dimensions will affect the fill volumes for initial lubrication.

Securing

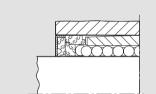
Super linear bushings, closed


- Retaining rings
- Metal case
- Wiper seal with metal case
- Special design

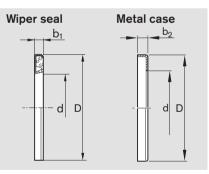
Shaft	DIN 471 retaining r	ings	DIN 472 retaining r	ings
Ø d (mm)	Material number	Dimensions (mm)	Material number	Dimensions (mm)
10	R3410 763 00	19x1.2	R3410 221 00	19x1
12	R3410 714 00	22x1.2	R3410 209 00	22x1
16	R3410 715 00	27x1.2 ¹⁾	R3410 210 00	26x1.2
20	R3410 716 00	33x1.5 ¹⁾	R3410 211 00	32x1.2
25	R3410 717 00	42x1.75	R3410 212 00	40x1.75
30	R3410 718 00	48x1.75	R3410 213 00	47x1.75
40	R3410 719 00	62x2	R3410 214 00	62x2
50	R3410 720 00	75x2.5	R3410 215 00	75x2.5

1) Not in accordance with DIN 471.

Secured with metal case

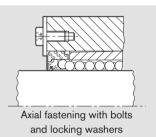

Wiper seals, closed Design:

- Galvanized metal case
- Elastomer wiper seal



Closed metal case Material: Galvanized steel

Fastened by wiper seal with metal case



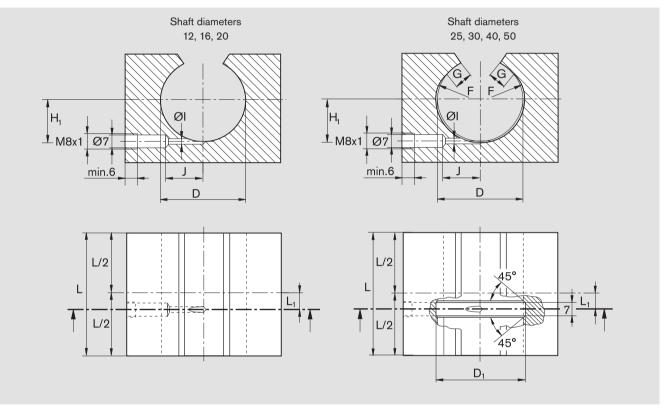
-

_

Shaft	Dimen	sions (n	nm)	Wiper seals		Metal cases	
Ø d (mm)	D ²⁾	b ₁ +0.3	b ₂ +0.5	Material number	Weight (g)	Material number	Weight (g)
10	19	3	3	R1331 610 00	1.1	R0901 184 00	0.64
12	22	3	3	R1331 612 00	1.6	R0901 074 00	0.94
16	26	3	3	R1331 616 00	2.0	R0901 075 00	1.20
20	32	4	4	R1331 620 00	4.5	R0901 076 00	3.00
25	40	4	4	R1331 625 00	6.6	R0901 077 00	4.20
30	47	5	5	R1331 630 00	9.3	R0901 078 00	5.30
40	62	5	5	R1331 640 00	17.0	R0901 079 00	9.20
50	75	6	6	R1331 650 00	24.0	R0901 115 00	13.60

2) Outer diameter D is oversized by about 0.1 mm. No additional securing is needed.

Super linear bushings
and
and


Customer-built housings

Recommended tolerance for housing bore D:

- H7 Clearance, for all normal applications
- K7 Minimal clearance, for applications with alternating loads
- M7 Moderate preload, for applications with vibrations or high acceleration

Please note the radial clearances (shaft/bore) in each of the tables.

Lubrication groove and lubricating hole for super linear bushings \square , \square , open, with top wiper seals

The lubricating channels shown are designed for grease, see Section "Lubrication" on page 21. Secure the wiper seals along the axis.

Material number	er		Shaft	Lubricant	qty. 1) (cm ³)	Dimensions (mm)									
Super linear bushings		Wiper seals		Prelubri-	Relubrication										
			Ød	cation											
Δ	B		(mm)			L ₁	H ₁	L (min)	D	D_1	F	G	ØI	J	
R0671 012 00	R0673 012 00	R1331 712 50	12	1.3	0.4	9.0	8.0	39	22	-	-	-	2	13	
R0671 016 00	R0673 016 00	R1331 716 50	16	1.3	0.4	10.0	12.0	43	26	-	-	-	2	14	
R0671 020 00	R0673 020 00	R1331 720 50	20	3.0	0.9	13.5	15.0	54	32	-	-	-	2	16	
R0671 025 00	R0673 025 00	R1331 725 50	25	5.0	1.5	18.5	20.0	67	40	42	R15	4.0	7	-	
R0671 030 00	R0673 030 00	R1331 730 50	30	7.0	2.1	23.5	23.5	79	47	49	R18	4.5	7	-	
R0671 040 00	R0673 040 00	R1331 740 50	40	13.0	3.9	27.5	31.0	91	62	66	R23	6.0	7	-	
R0671 050 00	R0673 050 00	R1331 750 50	50	22.0	6.6	34.5	37.5	113	75	79	R28	7.0	4	30	

1) Max. fill volume for Rexroth linear bushings in housing.

The specified initial lubrication and relubrication fill volumes refer to the linear sets R1037/R1038.

Customer-built housings with other lube port dimensions will affect the fill volumes for initial lubrication.

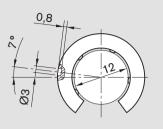
Securing

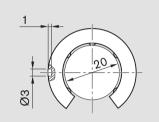
Super linear bushings, open

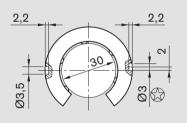
 Axial and torsional fastening with grooved taper pin.

Note on installation:

Open super linear bushings come with the necessary locating hole indicated with a star for shaft diameters 25 and higher. The taper pin is inserted to the specified depth during installation. The outer diameter of the super linear bushing is then constricted until it can slide past the pin. When aligning the linear bushing in the housing, the taper pin slides into the locating hole.

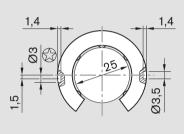

Mounting hole for taper pin in housing:

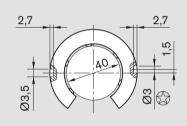

Shaft diameters 12 to 40: Ø 3.0 H11 (ISO 8744 size 3 standard taper pin)

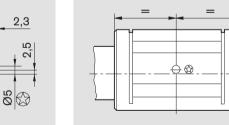

Shaft diameter 50: Ø 5.0 H11 (ISO 8744 size 5 standard taper pin)

Super linear bushings for shaft diameters 25 to 50 have 2 locating holes.

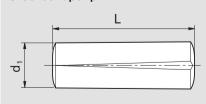
The second locating hole (Ø 3.5 for shaft diameters 25, 30 and 40, and Ø 4.5 for shaft diameter 50) can also be used to secure the linear bushing.



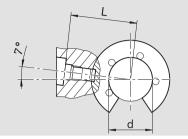



2,3

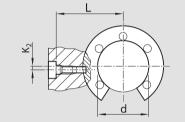
Ø4,5

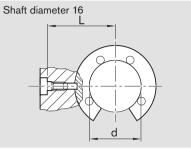


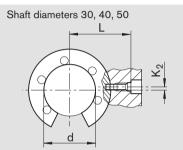
Grooved taper pin


Shaft Ø d	Dimensions (mm)		Weight	Mounting hole for taper pin	Material number Grooved taper pin
(mm)	d ₁	L	(g)	(mm)	
12 40	3	8.2	0.5	Ø 3 H11	R3425 013 00
	3	10.2	0.6		R3425 014 00
	3	14.2	0.8		R3425 015 00
50	5	20.4	3.1	Ø 5 H11	R3425 016 00
	5	14.0	2.2		R3425 017 00

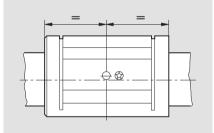
Super linear bushings
and
and

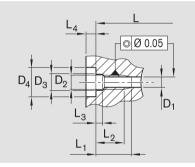

Customer-built housings


Securing


 Axial and torsional fastening with locating pin Shaft diameter 12

Shaft diameters 20¹⁾, 25

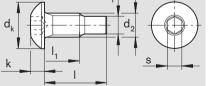


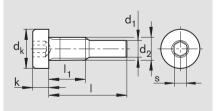


Note on installation:

1) $K_2 = 0 \text{ mm}$

Open super linear bushings come with the necessary locating hole indicated with a star for shaft diameters 25 and higher. During installation, the locating hole in the linear bushing is aligned with the pin hole in the housing. The pin is then screwed in and tightened to the specified torque.




Locating screws

Locating screws are self-locking.

Shaft diameters 12, 16, 20

Shaft diameters 25, 30, 40, 50

Dimer	Dimensions (mm) W														Weight	Locating screw				
																			Material	Tightening
Shaft	L	K_2	L ₁	L ₂	L_3	L_4	D_1	D_2	D_3	D_4	d_2	d _k	d ₁	I	I ₁	k	s		number	torque
Ød				min.	+0.2	min.	+0.1		H13	H13								(g)		(Nm)
12	18.80 _{-0.10}	-	7.2_{max}	5.2	1.3	2.5	3.1	M4	4.5	8	M4	7.6	3	8.45	4.5	2.2	2.5	1.3	R3429 008 01	1.9
16	22.50 _{-0.10}	0	8.5+0.2	6.5	1.3	2.5	3.1	M4	4.5	8	M4	7.6	3	10.15	5.7	2.2	2.5	1.4	R3429 009 01	1.9
20	25.50 _{-0.10}	0	8.5 ^{+0.2}	6.5	1.3	2.5	3.1	M4	4.5	8	M4	7.6	3	10.15	5.7	2.2	2.5	1.4	R3429 009 01	1.9
25	33.05 _{-0.10}	1.5	10.0+0.2	8.0	2.0	3.2	3.1	M4	4.5	8	M4	7.0	3	14.10	6.5	2.8	2.5	1.8	R3427 009 09	1.9
30	36.00 _{-0.15}	2.0	10.0+0.2	8.0	2.0	3.2	3.1	M4	4.5	8	M4	7.0	3	14.10	6.5	2.8	2.5	1.8	R3427 009 09	1.9
40	42.90 _{-0.15}	1.5	10.0 ^{+0.2}	8.0	2.0	3.2	3.1	M4	4.5	8	M4	7.0	3	14.10	6.5	2.8	2.5	1.8	R3427 009 09	1.9
50	58.50 _{-0.20}	2.5	17.5+0.5	13.5	3.7	6.0	5.1	M8	9.0	15	M8	13.0	5	22.80	12.5	5.0	5.0	11.1	R3427 005 09	16.0

Wiper seals, open

Design:

- Galvanized metal case
- Elastomer wiper seal

Dimension	s (mm)		Angle (°)	Weight (g)	Material number Wiper seals	
Shaft Ø d	D ¹⁾	b	α2)			
		+0.1				
		-0.2				L
12	22	3	66	2.0	R1331 712 50	
16	26	3	68	2.6	R1331 716 50	6
20	32	4	55	4.7	R1331 720 50	
25	40	4	57	7.7	R1331 725 50	-
30	47	5	57	13.5	R1331 730 50	-
40	62	5	56	25.0	R1331 740 50	-
50	75	6	54	42.0	R1331 750 50	-

1) Outer diameter D is oversized by about 0.3 mm.

No additional securing is needed.

Additional fastening recommended for vibrations and high acceleration.

2) Minimum size installed; in a hole with nominal size "D".

Super linear bushing with misalignment compensation

Super linear bushings, R0670 Closed

Super linear bushings, R0671 Open

Design

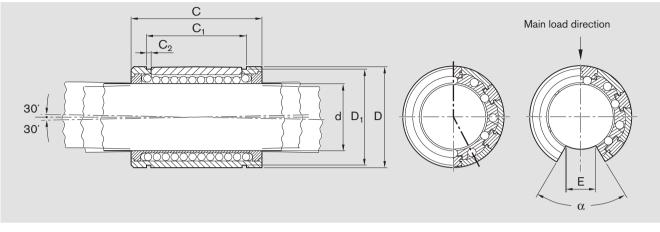
- Ball retainer and outer sleeve made of PA or POM
- Hardened steel bearing plates with machined ball guide grooves
- Balls made of rolling bearing steel
- Compensate for misalignments of up
 - to 30 ft
- No wiper seal
- Integrated wiper seals
- No initial lubrication

Shaft	Material number		Weight
	No wiper seal	With two integrated wiper	
Ød		seals	
(mm)	КВА	KBADD	(kg)
10	R0670 010 00	R0670 210 40	0.017
12	R0670 012 00	R0670 212 40	0.023
16	R0670 016 00	R0670 216 40	0.028
20	R0670 020 00	R0670 220 40	0.061
25	R0670 025 00	R0670 225 40	0.122
30	R0670 030 00	R0670 230 40	0.185
40	R0670 040 00	R0670 240 40	0.360
50	R0670 050 00	R0670 250 40	0.580

With an integrated wiper seal: R0670 1 ... 40.

Shaft	Material number			Weight
	No wiper seal	with two integrated	with two integrated	
		wiper seals	wiper seals and	
Ød			linear seal	
(mm)	КВА-О	KBA-ODD	KBA-OVD	(kg)
12	R0671 012 00	R0671 212 40	R0671 212 45	0.018
16	R0671 016 00	R0671 216 40	R0671 216 45	0.022
20	R0671 020 00	R0671 220 40	R0671 220 45	0.051
25	R0671 025 00	R0671 225 40	R0671 225 45	0.102
30	R0671 030 00	R0671 230 40	R0671 230 45	0.155
40	R0671 040 00	R0671 240 40	R0671 240 45	0.300
50	R0671 050 00	R0671 250 40	R0671 250 45	0.480

With an integrated wiper seal: R0671 1 ... 40.


See Section "Customer-built housing" for separate wiper seals.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Explanation of sample short product name

KB	Α	0	20	DD
Linear bushing	Super 🗖	Open	Ø 20	Two seals

See page 38 for more information on short product names.

Closed

Dimer	nsions	(mm)				Rows	Radial cleara	i nce (μm)		Load ratings	(N)		_
Ød	D	С	C ₁	C ₂	D ₁	of balls	Shaft/bore				dyn. C		stat. C ₀
		h13	H13				h6/H7	h6/K7	h6/M7	min.	max.	min.	max.
10	19	29	21.6	1.3	18.0	5	+9	+21	+15	600	820	330	480
							+36	-6	-12				
12	22	32	22.6	1.3	21.0	5	+38	+23	+17	830	1,140	420	620
							+10	-5	-11				
16	26	36	24.6	1.3	24.9	5	+38	+23	+17	1,020	1,400	530	780
							+10	-5	-11				
20	32	45	31.2	1.6	30.5	6	+43	+25	+18	2,020	2,470	1,050	1,340
							+11	-7	-14				
25	40	58	43.7	1.85	38.5	6	+43	+25	+18	3,950	4,820	2,180	2,790
							+11	-7	-14				
30	47	68	51.7	1.85	44.5	6	+43	+25	+18	4,800	5,860	2,790	3,570
							+11	-7	-14				
40	62	80	60.3	2.15	58.5	6	+50	+29	+20	8,240	10,070	4,350	5,570
							+12	-9	-18				
50	75	100	77.3	2.65	71.5	6	+50	+29	+20	12,060	14,730	6,470	8,280
							+12	-9	-18				

Open

Dimen	sions	(mm)				Angle	Rows of	Radial clearanc	e (μm)		Load ratings ²⁾ (N)			
Ød	D	C	C ₁	C ₂	E ¹⁾	α	balls	Shaft/bore						
		h13	H13			(°)		h6/H7	h6/K7	h6/M7	dyn. C	stat. C ₀		
12	22	32	22.6	1.3	6.5	66	4	+38	+23	+17	1,060	510		
								+10	-5	-11				
16	26	36	24.6	1.3	9.0	68	4	+38	+23	+17	1,500	830		
								+10	-5	-11				
20	32	45	31.2	1.6	9.0	55	5	+43	+25	+18	2,570	1,180		
								+11	-7	-14				
25	40	58	43.7	1.85	11.5	57	5	+43	+25	+18	5,040	2,470		
								+11	-7	-14				
30	47	68	51.7	1.85	14.0	57	5	+43	+25	+18	5,020	2,880		
								+11	-7	-14				
40	62	80	60.3	2.15	19.5	56	5	+50	+29	+20	8,620	4,480		
								+12	-9	-18				
50	75	100	77.3	2.65	22.5	54	5	+50	+29	+20	12,500	6,620		
								+12	-9	-18				

1) Minimum size in relation to \mathcal{O} d

2) The load ratings apply for the main load direction.

Super linear bushing without misalignment compensation

Super linear bushings, R0672 Closed

Super linear bushings, R0673 Open

Design

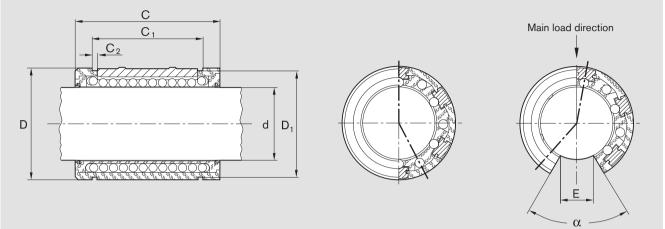
- Ball retainer and outer sleeve made of PA or POM
- Hardened steel bearing plates with machined ball guide grooves
- Balls made of rolling bearing steel
- No wiper seal
- Integrated wiper seals
- No initial lubrication

Shaft	Material number		Weight
	No wiper seal	With two integrated wiper	
Ød		seals	
(mm)	КВВ	KBBDD	(kg)
10	R0672 010 00	R0672 210 40	0.017
12	R0672 012 00	R0672 212 40	0.023
16	R0672 016 00	R0672 216 40	0.028
20	R0672 020 00	R0672 220 40	0.061
25	R0672 025 00	R0672 225 40	0.122
30	R0672 030 00	R0672 230 40	0.185
40	R0672 040 00	R0672 240 40	0.360
50	R0672 050 00	R0672 250 40	0.580

With an integrated wiper seal: R0672 1 ... 40.

Shaft	Material number			Weight
	No wiper seal	With two integrat- ed wiper seals	With two integrat- ed wiper seals and linear seal	
Ød				
(mm)	КВВ-О	KBB-ODD	KBB-OVD	(kg)
12	R0673 012 00	R0673 212 40	R0673 212 45	0.018
16	R0673 016 00	R0673 216 40	R0673 216 45	0.022
20	R0673 020 00	R0673 220 40	R0673 220 45	0.051
25	R0673 025 00	R0673 225 40	R0673 225 45	0.102
30	R0673 030 00	R0673 230 40	R0673 230 45	0.155
40	R0673 040 00	R0673 240 40	R0673 240 45	0.300
50	R0673 050 00	R0673 250 40	R0673 250 45	0.480

With an integrated wiper seal: R0673 1 ... 40.


See Section "Customer-built housing" for separate wiper seals.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Explanation of sample short product name

KB	В	0	20	DD
Linear bushing	Super 🗈	Open	Ø 20	Two seals

See page 38 for more information on short product names.

Closed

Dimer	nsions	(mm)				Rows of	Radial cleara	ance (µm) Sł	naft/bore	Load ratings	; (N)		
Ød	D	С	C ₁	C ₂	D ₁	balls					dyn. C		stat. C ₀
		h13	H13				h6/H7	h6/K7	h6/M7	min.	max.	min.	max.
10	19	29	21.6	1.3	18.0	5	+9	+21	+15	600	820	330	480
							+36	-6	-12				
12	22	32	22.6	1.3	21.0	5	+38	+23	+17	830	1,140	420	620
							+10	-5	-11				
16	26	36	24.6	1.3	24.9	5	+38	+23	+17	1,020	1,400	530	780
							+10	-5	-11				
20	32	45	31.2	1.6	30.5	6	+43	+25	+18	2,020	2,470	1,050	1,340
							+11	-7	-14				
25	40	58	43.7	1.85	38.5	6	+43	+25	+18	3,950	4,820	2,180	2,790
							+11	-7	-14				
30	47	68	51.7	1.85	44.5	6	+43	+25	+18	4,800	5,860	2,790	3,570
							+11	-7	-14				
40	62	80	60.3	2.15	58.5	6	+50	+29	+20	8,240	10,070	4,350	5,570
							+12	-9	-18				
50	75	100	77.3	2.65	71.5	6	+50	+29	+20	12,060	14,730	6,470	8,280
							+12	-9	-18				

Open

Open												
Dimen	sions	(mm)				Angle	Rows of	Radial clearanc	e (μm) Shaft/b	ore	Load ratings ²⁾	(N)
Ød	D	С	C ₁	C_2	E ¹⁾	α	balls					
		h13	H13			(°)		h6/H7	h6/K7	h6/M7	dyn. C	stat. C ₀
12	22	32	22.6	1.3	6.5	66	4	+38	+23	+17	1,060	510
								+10	-5	-11		
16	26	36	24.6	1.3	9.0	68	4	+38	+23	+17	1,500	830
								+10	-5	-11		
20	32	45	31.2	1.6	9.0	55	5	+43	+25	+18	2,570	1,180
								+11	-7	-14		
25	40	58	43.7	1.85	11.5	57	5	+43	+25	+18	5,040	2,770
								+11	-7	-14		
30	47	68	51.7	1.85	14.0	57	5	+43	+25	+18	5,020	2,880
								+11	-7	-14		
40	62	80	60.3	2.15	19.5	56	5	+50	+29	+20	8,620	4,480
								+12	-9	-18		
50	75	100	77.3	2.65	22.5	54	5	+50	+29	+20	12,500	6,620
								+12	-9	-18		

1) Minimum size in relation to Ø d

2) The load ratings apply for the main load direction.

Linear sets with super linear bushings ${\bf \Phi}$ or ${\bf B}$

Overview

	Linear sets Super linear bushings with misalignment compe Super linear bushings without misalignment com	npensation	Tandem linear sets Super linear bushings with misalignment compensation
	Aluminum housing	Cast iron/steel housing	Aluminum housing
Closed For precision guides with easy installation. Fixed working bore diameter.	R1035	R1065	R1085
Adjustable For zero-clearance or preloaded guides. Adjusting screw for adjusting radial clear- ance. These linear sets come set to zero clearance.	R1036	R1066	R1032
Open For long guides requiring shaft support and high rigidity.	R1037	R1067	R1087
Open, adjustable For zero-clearance or preloaded guides. Adjusting screw for adjusting radial clearance. These linear sets come set to zero clearance.	R1038	R1068	R1034
Side opening For absorbing forces from all directions without reducing load rating.	R1071		
Side opening, adjustable For zero-clearance or preloaded guides. Adjusting screw for adjusting radial clearance. These linear sets come set to zero clearance.	R1072		
Flanged This modular unit complements the linear set series and is used for designs with a vertical shaft.		R1081	R1083

Benefits/installation

Benefits

Benefits High load rating and rigidity	These linear sets provide high rigidity regardless of load direction, even at maximum load.						
Aluminum variant features compact block design and easy installation	The super linear bushing is completely enclosed in the compact housing and protected from external forces. The threads allow fastening from above or below. The reference edge of the housings allow it to be aligned with ease to prevent distortive stress on the linear bushings. Centering holes make additional bolting easier.						
High precision and functional reliability	The housing design and the built-in super linear bushing guarantee high precision and functional reliability.						
Zero-clearance guides	The adjustable linear bushings accommoda	te zero-clearance guides.					
Operating temperatures	-10 °C to 80 °C						
Installation Radial clearance	The radial clearance values shown in the table have been determined from statistics and correspond to values expected in practice. The adjustable linear sets come clamped to an h5 shaft (lower limit) and set to zero clearance.						
Vertical dimension	The tolerance values for the vertical dimension "H" for linear sets shown in the table have been determined from statistics and correspond to values expected in practice.						
Bolts	We recommend bolts in accordance with IS	SO 4762-8.8 for fastening the linear sets.					
Lubrication	On-shaft relubrication only and until lubricant comes out.						
Notes on installing linear sets with side opening	 No reference edges Straighten the first shaft using the shaft support rail and fasten it in place. Align the second shaft parallel to the first and fasten it in place. Slide the linear sets onto the shaft and fasten it to the machine table. 						
	 With reference edges Press the first shaft with shaft support roll acts the reference edge and fee 						

- rail onto the reference edge and fasten the shaft support rail in place.Align the second shaft parallel to the first and fasten the shaft support rail
- in place.Slide the linear sets onto the shafts.
- Next:
 - a) With one reference edge on the machine base and one on the machine table: Press the linear sets on the first shaft onto the reference edge of the machine table and fasten it in place. Fasten the linear sets on the second shaft to the machine table.

 b) With just one reference edge on the machine base: Fasten linear sets to the machine table. Linear sets with super linear bushings
or
or

Linear sets, R1035 Closed

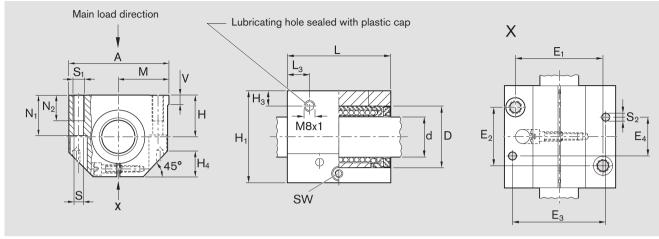
Linear sets, R1036 Adjustable

Design

- Lightweight precision housing (aluminum)
- Super linear bushing with or without misalignment compensation
- Top wiper seals
- Relubricatable

Shaft	Material number		Weight
	Super linear bushing 🖾	Super linear bushing 🗉	
	Relubricatable	Relubricatable	
Ød	With two wiper seals	With two wiper seals	
(mm)	LSA-ADD	LSA-BDD	(kg)
10	R1035 610 20	R1035 810 20	0.10
12	R1035 612 20	R1035 812 20	0.13
16	R1035 616 20	R1035 816 20	0.20
20	R1035 620 20	R1035 820 20	0.34
25	R1035 625 20	R1035 825 20	0.65
30	R1035 630 20	R1035 830 20	0.97
40	R1035 640 20	R1035 840 20	1.80
50	R1035 650 20	R1035 850 20	3.00

Adjustable	Shaft	Material number
,		Super linear bushing 🖾
		Relubricatable
	Ød	With two wiper seals
	(mm)	LSAE-ADD
	10	R1036 610 20
	12	R1036 612 20
	16	R1036 616 20
	20	R1036 620 20
	25	R1036 625 20
	30	R1036 630 20
	40	R1036 640 20
~	50	R1036 650 20


_

Shaft	Material number		Weight
	Super linear bushing 🖾	Super linear bushing 🗉	
	Relubricatable	Relubricatable	
Ød	With two wiper seals	With two wiper seals	
(mm)	LSAE-ADD	LSAE-BDD	(kg)
10	R1036 610 20	R1036 810 20	0.10
12	R1036 612 20	R1036 812 20	0.13
16	R1036 616 20	R1036 816 20	0.20
20	R1036 620 20	R1036 820 20	0.34
25	R1036 625 20	R1036 825 20	0.65
30	R1036 630 20	R1036 830 20	0.97
40	R1036 640 20	R1036 840 20	1.80
50	R1036 650 20	R1036 850 20	3.00

Explanation of sample short product name

LS	А	E	В	20	DD
Linear set	Aluminum	Adjustable	Super 🗉	Ø 20	Two seals

See page 39 for more information on short product names.

D	H ¹⁾	H ₁	M ¹⁾	A	L	E ₁	E ₂	E ₃	E_4	S ²⁾	S ₁	S ₂ ³⁾	N ₁	N_2	H_3	L ₃	V	SW	H_4
	+0.008		±0.01																
	-0.016																		
19	16	31.5	20.0	40	36	29 ^{±0.15}	20 ^{±0.15}	31	29	4.3	M5	4	15.0	11	10.0	10.5	5.0	2.5	10
22	18	35.0	21.5	43	39	32 ^{±0.15}	23 ^{±0.15}	34	32	4.3	M5	4	16.5	11	10.0	10.5	5.0	2.5	10
26	22	42.0	26.5	53	43	40 ^{±0.15}	26 ^{±0.15}	42	35	5.3	M6	4	21.0	13	10.0	11.5	5.0	3.0	13
32	25	50.0	30.0	60	54	45 ^{±0.15}	32 ^{±0.15}	50	45	6.6	M8	5	24.0	18	10.0	13.5	5.0	4.0	16
40	30	60.0	39.0	78	67	60 ^{±0.15}	40 ^{±0.15}	64	20	8.4	M10	6	29.0	22	10.0	15.0	6.5	5.0	20
47	35	70.0	43.5	87	79	68 ^{±0.15}	45 ^{±0.15}	72	30	8.4	M10	6	34.0	22	11.5	16.0	8.0	5.0	22
62	45	90.0	54.0	108	91	86 ^{±0.15}	58 ^{±0.15}	90	35	10.5	M12	8	44.0	26	14.0	18.0	10.0	6.0	28
75	50	105.0	66.0	132	113	108 ^{±0.20}	50 ^{±0.20}	108	42	13.5	M16	10	49.0	34	12.5	22.0	12.0	80	37
	19 22 26 32 40 47 62	+0.008 -0.016 19 16 22 18 26 22 32 225 40 300 47 35 62 45	+0.008 -0.016 19 16 31.5 22 18 35.0 26 22 42.0 32 25 50.0 40 30 60.0 47 35 70.0 62 45 90.0	+0.008 ±0.01 -0.016 ±0.01 19 16 31.5 20.0 22 18 35.0 21.5 26 22 42.0 26.5 32 25 50.0 30.0 40 30 60.0 39.0 47 35 70.0 43.5 62 45 90.0 54.0	+0.008 ±0.01 -0.016 ±0.01 19 16 31.5 20.0 40 22 18 35.0 21.5 43 26 22 42.0 26.5 53 32 25 50.0 30.0 60 40 30 60.0 39.0 78 47 35 70.0 43.5 87 62 45 90.0 54.0 108	+0.008 ±0.01 ±0.01 19 16 31.5 20.0 40 36 22 18 35.0 21.5 43 39 26 22 42.0 26.5 53 43 32 25 50.0 30.0 60 54 40 30 60.0 39.0 78 67 47 35 70.0 43.5 87 79 62 45 90.0 54.0 108 91	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$+0.008$ ± 0.01 ± 0.01 -1 -1 -1 -1 19 16 31.5 20.0 40 36 $29^{\pm 0.15}$ $20^{\pm 0.15}$ 22 18 35.0 21.5 43 39 $32^{\pm 0.15}$ $23^{\pm 0.15}$ 26 22 42.0 26.5 53 43 $40^{\pm 0.15}$ $26^{\pm 0.15}$ 32 25 50.0 30.0 60 54 $45^{\pm 0.15}$ $32^{\pm 0.15}$ 40 30 60.0 39.0 78 67 $60^{\pm 0.15}$ $45^{\pm 0.15}$ 47 35 70.0 43.5 87 79 $68^{\pm 0.15}$ $45^{\pm 0.15}$ 62 45 90.0 54.0 108 91 $86^{\pm 0.15}$ $58^{\pm 0.15}$	$+0.008$ ± 0.01 ± 0.01 10 <th>$+0.008$ ± 0.01 ± 0.01 ± 0.01 -1 -1</th> <th>+0.008 -0.016±0.01 ±0.01±0.01 c±0.01 c±0.01 c±0.01 c±0.01 c±0.01 c±0.01 c±0.01 c±0.01<br c<="" th=""/>±0.01<br c<="" th=""/>10^{-1} c10^{-1} c10^{-1} c$20^{\pm 0.15}$ c$20^{\pm 0.15}$ c31 c29<br c<="" th=""/>4.3 c191631.520.04036$29^{\pm 0.15}$ c$20^{\pm 0.15}$$31$ c29<br c<="" td=""/>4.3 c221835.021.54339$32^{\pm 0.15}$$26^{\pm 0.15}$$42$<br c<="" td="">$35$$5.3$ c3222550.030.060$54$$45^{\pm 0.15}$$32^{\pm 0.15}$$50$$45$$6.6$<br c<="" td="">403060.039.078$67$$60^{\pm 0.15}$$40^{\pm 0.15}$$64$$20$$8.4$$47$$35$70.0$43.5$$87$79$68^{\pm 0.15}$$45^{\pm 0.15}$$72$$30$$8.4$$62$$45$90.0$54.0$10891$86^{\pm 0.15}$$58^{\pm 0.15}$$90$$35$$10.5$</br></br></br></br></br></th> <th>+0.008 ±0.01 <t< th=""><th>$+0.008$ ± 0.01 ± 0.011 ± 0.01 <</th><th>$+0.008$ ± 0.01 ± 0.01</th><th>+0.008 -0.016±0.01 ±0.01±0.01 c±0.01<br c<="" th=""/>±0.01<br c<="" th=""/></br></th><th>+0.008 -0.016±0.01 ±0.01±0.01 c±0.01<br c<="" th=""/>±0.01<br c<="" th=""/></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></th><th>+0.008 -0.016±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></th><th>$+0.008$ ± 0.01 ± 0.01</th><th>$+0.008$ ± 0.01 ± 0.01 $= 0$ $= 0$</th></t<></th>	$+0.008$ ± 0.01 ± 0.01 ± 0.01 -1	+0.008 -0.016±0.01 ±0.01±0.01 c±0.01 c±0.01 c±0.01 c±0.01 c±0.01 c±0.01 c±0.01 c±0.01 ±0.01 10^{-1} c 10^{-1} c 10^{-1} 	+0.008 ±0.01 <t< th=""><th>$+0.008$ ± 0.01 ± 0.011 ± 0.01 <</th><th>$+0.008$ ± 0.01 ± 0.01</th><th>+0.008 -0.016±0.01 ±0.01±0.01 c±0.01<br c<="" th=""/>±0.01<br c<="" th=""/></br></th><th>+0.008 -0.016±0.01 ±0.01±0.01 c±0.01<br c<="" th=""/>±0.01<br c<="" th=""/></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></th><th>+0.008 -0.016±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±0.01 <math>10</math>±</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></th><th>$+0.008$ ± 0.01 ± 0.01</th><th>$+0.008$ ± 0.01 ± 0.01 $= 0$ $= 0$</th></t<>	$+0.008$ ± 0.01 ± 0.011 ± 0.01 <	$+0.008$ ± 0.01	+0.008 -0.016±0.01 ±0.01±0.01 c±0.01 	+0.008 -0.016±0.01 ±0.01±0.01 c±0.01 	+0.008 -0.016±0.01 10 ±0.01 10 ±0.01 	$+0.008$ ± 0.01	$+0.008$ ± 0.01 ± 0.01 $= 0$

Ød	Radial clear	ance (μm)	Load ratings ⁴⁾ (N)	
	R1035	R1036	dyn. C	stat. C ₀
(mm)	h6 shaft			
10	+36	р	730	380
	+9	set		
12	+38	pu	1,020	490
	+10	t) a		
16	+38	<u>.</u>	1,250	620
	+10	/er		
20	+43		2,470	1,340
	+11	aft		
25	+43	shs	4,820	2,790
	+11	h5		
30	+43	1 2	5,860	3,570
	+11	bed es		
40	+50	anc	10,070	5,570
	+12	Comes clamped to h5 shaft (lower limit) and set to zero clearance		
50	+50		14,730	8,280
	+12	Zer Zer		

- 1) Clamped (fastened) in relation to \mathcal{O} d.
- 2) ISO 4762-8.8 fastening bolts.
- 3) Pin centering.
 - 4) The load ratings apply for the main load direction.

If the load direction is not the main load direction, the load ratings must be multiplied by the following factors:

Ø d 10 to 16: $f = 0.82, f_0 = 0.86$ Ø d 20 to 50: $f = 0.82, f_0 = 0.78$

The dynamic load ratings are based on a total travel of 100,000 m.

When based on 50,000 m, the C values in the table are multiplied by 1.26.

Linear sets with super linear bushings
or
or

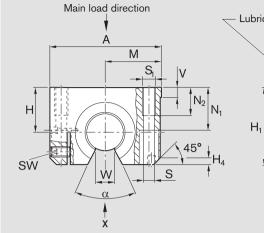
Linear sets, R1037 Open

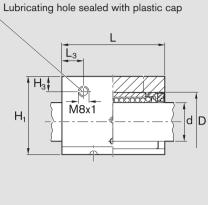
Linear sets, R1038 Open

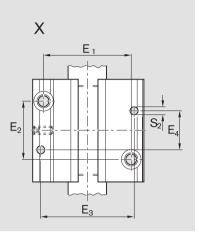
Design

- Lightweight precision housing (aluminum)
- Secured by grooved taper pin
- Super linear bushing with or without misalignment compensation
- Top wiper seals
- Relubricatable

Shaft	Material number		Weight
	Super linear bushing 🖾	Super linear bushing 🗉	
	Relubricatable	Relubricatable	
Ød	With two wiper seals	With two wiper seals	
(mm)	LSAO-ADD	LSAO-BDD	(kg)
12	R1037 612 20	R1037 812 20	0.11
16	R1037 616 20	R1037 816 20	0.17
20	R1037 620 20	R1037 820 20	0.30
25	R1037 625 20	R1037 825 20	0.57
30	R1037 630 20	R1037 830 20	0.86
40	R1037 640 20	R1037 840 20	1.60
50	R1037 650 20	R1037 850 20	2.60


Open, adjustable	
	-=


Shaft	Material number		Weight
	Super linear bushing 🖾	Super linear bushing 🗈	
	Relubricatable	Relubricatable	
Ød	With two wiper seals	With two wiper seals	
(mm)	LSAOE-ADD	LSAOE-BDD	(kg)
12	R1038 612 20	R1038 812 20	0.11
16	R1038 616 20	R1038 816 20	0.17
20	R1038 620 20	R1038 820 20	0.30
25	R1038 625 20	R1038 825 20	0.57
30	R1038 630 20	R1038 830 20	0.86
40	R1038 640 20	R1038 840 20	1.60
50	R1038 650 20	R1038 850 20	2.60


Explanation of sample short product name

LS	А	0	E	В	20	DD
Linear set	Aluminum	Open	Adjustable	Super 🗉	Ø 20	Two seals

See page 39 for more information on short product names.

Dime	ensio	ns (mm)																				
Ød	D	H ¹⁾	H_1	M ¹⁾	Α	L	E ₁	E ₂	E ₃	E ₄	S ²⁾	S ₁	S ₂ ³⁾	N ₁	N ₂	H ₃	L ₃	V	SW	W4)	H ₄	
		+0.008		±0.01																		6
		-0.016																				
12	22	18	28	21.5	43	39	32 ^{±0.15}	23 ^{±0.15}	34	32	4.3	M5	4	16.5	11	10.0	10.5	5.0	2.5	6.5	1.5	
16	26	22	35	26.5	53	43	40 ^{±0.15}	26 ^{±0.15}	42	35	5.3	M6	4	21.0	13	10.0	11.5	5.0	2.5	9.0	2.5	
20	32	25	42	30.0	60	54	45 ^{±0.15}	32 ^{±0.15}	50	45	6.6	M8	5	24.0	18	10.0	13.5	5.0	2.5	9.0	3.5	
25	40	30	51	39.0	78	67	60 ^{±0.15}	40 ^{±0.15}	64	20	8.4	M10	6	29.0	22	10.0	15.0	6.5	3.0	11.5	4.0	-
30	47	35	60	43.5	87	79	68 ^{±0.15}	45 ^{±0.15}	72	30	8.4	M10	6	34.0	22	11.5	16.0	8.0	3.0	14.0	6.0	
40	62	45	77	54.0	108	91	86 ^{±0.15}	58 ^{±0.15}	90	35	10.5	M12	8	44.0	26	14.0	18.0	10.0	4.0	19.5	6.0	
50	75	50	88	66.0	132	113	108 ^{±0.20}	50 ^{±0.20}	108	42	13.5	M16	10	49.0	34	12.5	22.0	12.0	5.0	22.5	6.0	_

Ød	Angle	Radial cleara	ince 5) (μm)	Load ratings ⁶⁾ (N)	
	α	R1037	R1038	dyn. C	stat. C ₀
		h6 shaft			
(mm)	(°)				
12	66	+28	P	1,060	510
		-1	t) a		
16	68	+28	shaft (lower limit) and	1,500	830
		-1	/er		
20	55	+31	NO NO	2,570	1,180
		-2	aft (
25	57	+31		5,040	2,470
		-2	h5 e		
30	57	+31	l to and	5,020	2,880
		-2	pec		
40	56	+35	am o cl	8,620	4,480
		-3	Comes clamped to h5 set to zero clearance		
50	54	+35	Come set to	12,500	6,620
		-3	set Co		

- 1) Clamped (fastened) in relation to Ø d.
- 2) ISO 4762-8.8 fastening bolts.

- 4) Minimum size in relation to Ø d.
- 5) Clamped (fastened).
- 6) The load ratings apply for the main load direction.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

 \triangle Refer to the diagrams on page 41 for load in the direction of opening.

³⁾ Pin centering.

Linear sets with super linear bushings
or
or

Linear sets, R1071 Side opening

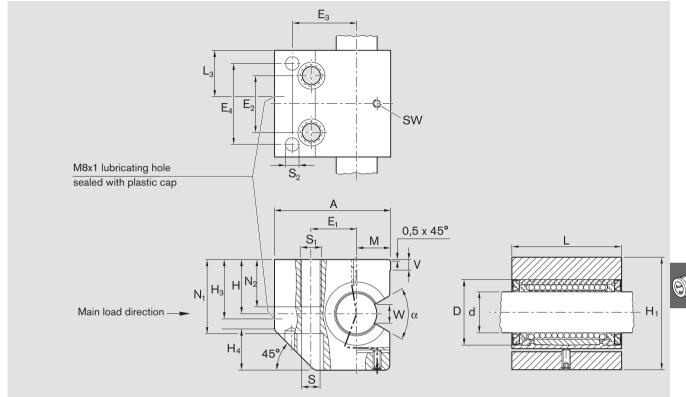
Linear sets, R1072 Side opening, adjustable

Design

- Lightweight precision housing (aluminum)
- Secured by grooved taper pin
- Super linear bushing with or without misalignment compensation
- Top wiper seals
- Relubricatable

Load exerted on the direction of opening	J
of open linear bushings usually results in	۱
a considerable reduction in load rating.	
In order to prevent this and facilitate the	
installation of specific open linear bush-	
ings, the lightweight linear set with side	
opening was developed.	

Shaft	Material number		Weight
	Super linear bushing 🕰	Super linear bushing	
	Relubricatable	Relubricatable	
Ød	With two wiper seals	With two wiper seals	
(mm)	LSAS-ADD	LSAS-BDD	(kg)
20	R1071 620 20	R1071 820 20	0.42
25	R1071 625 20	R1071 825 20	0.80
30	R1071 630 20	R1071 830 20	1.20
40	R1071 640 20	R1071 840 20	2.00
50	R1071 650 20	R1071 850 20	3.20



Shaft	Material number		Weight
	Super linear bushing 🖾	Super linear bushing 🗉	
	Relubricatable	Relubricatable	
Ød	With two wiper seals	With two wiper seals	
(mm)	LSASE-ADD	LSASE-BDD	(kg)
20	R1072 620 20	R1072 820 20	0.42
25	R1072 625 20	R1072 825 20	0.80
30	R1072 630 20	R1072 830 20	1.20
40	R1072 640 20	R1072 840 20	2.00
50	R1072 650 20	R1072 850 20	3.20

Explanation of sample short product name

LS	А	S	E	В	20	DD
Linear set	Aluminum	Side opening	Adjustable	Super 🗈	Ø 20	Two seals

See page 39 for more information on short product names.

Dime	Dimensions (mm)																				
Ød	D	H ¹⁾	H ₁	M ¹⁾	Α	L	E ₁	E_2	E3	E_4	S ²⁾	S ₁	S ₂ ³⁾	N ₁	N_2	V	SW	W4)	H_3	L ₃	H_4
		+0.008		±0.01			±0.15	±0.15													
		-0.016																			
20	32	30	60	17	60	54	22	30	33	42	8.4	M10	6	42	15	5.0	2.5	9.0	32	23.5	22
25	40	35	72	21	75	67	28	36	42	52	10.5	M12	8	50	18	6.5	3.0	11.5	38	29.0	26
30	47	40	82	25	86	79	34	42	48	60	13.5	M16	10	55	24	8.0	3.0	14.0	44	34.0	30
40	62	45	100	32	110	91	43	48	62	68	15.5	M20	12	67	30	10.0	4.0	19.5	50	40.0	38
50	75	50	115	38	127	113	50	62	70	85	17.5	M20	12	78	30	12.0	5.0	22.5	56	48.0	45

Shaft	Angle	Radial cleara	ince ⁵⁾ (μm)	Load ratings ⁶⁾ (N)	
Ød	α	R1071 h6 shaft	R1072	dyn. C	stat. C ₀
(mm)	(°)				
20	55	+31	±.	2,570	1,180
25	57	+31	5 shaft to zero	5,040	2,470
30	57	+31	Comes clamped to h5 (lower limit) and set to clearance	5,020	2,880
40	56	+35 -3	s clamp limit) a nce	8,620	4,480
50	54	+35 -3	Comes clan (lower limit) clearance	12,500	6,620

- 1) Clamped (fastened) in relation to Ø d.
- 2) ISO 4762-8.8 fastening bolts.
- 3) Pin centering.
- 4) Minimum size in relation to Ø d.
- 5) Clamped (fastened).
- 6) The load ratings apply for the main load direction.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

See the notes on installing linear sets with side opening.

Linear sets with super linear bushings 2, tandem

Linear sets, R1085 Closed

Linear sets, R1032 Adjustable

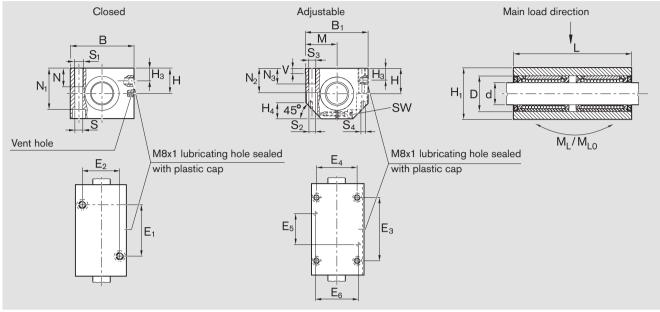
Design

- Lightweight precision tandem housing (aluminum)
- Two super linear bushings 🕰
- Top wiper seals
- Reference edge (for tandem linear set, adjustable)
- Relubricatable



Shaft	Material number	Weight
Ø d (mm)	LSAT-ADD	(kg)
12	R1085 612 20	0.27
16	R1085 616 20	0.41
20	R1085 620 20	0.72
25	R1085 625 20	1.35
30	R1085 630 20	2.01
40	R1085 640 20	3.67
50	R1085 650 20	6.30

Shaft	Material number	Weight
Ø d (mm)	LSATE-ADD	(kg)
10	R1032 610 20	0.20
12	R1032 612 20	0.27
16	R1032 616 20	0.41
20	R1032 620 20	0.72
25	R1032 625 20	1.35
30	R1032 630 20	2.01
40	R1032 640 20	3.67
50	R1032 650 20	6.30


Also available as linear slides. See R310 3001 in the "Linear slides" catalog.

Explanation of sample short product name

LS	А	Т	E	А	20	DD
Linear set	Aluminum	Tandem	Adjustable	Super 🗖	Ø 20	Two seals

See page 39 for more information on short product names.

Dimensions (mm)

-		0110 ('																							
Ød	D	H ¹⁾	H ₁	H ₃	M ¹⁾	В	B ₁	L	E12)	E ₂ ²⁾	E ₃ 2)	E ₄ ²⁾	E_5	E ₆	S ³⁾	S ₁	S ₂ ³⁾	S ₃	S ₄ ⁴⁾	Ν	N_1	N_2	N ₃	V	SW	H_4
		+0.008			±0.01				±0.15	±0.15	±0.15	±0.15														
		-0.016																								
10	19	16	31.5	9	20.0	-	40	70	-	-	52	29	20	31	-	-	4.3	M5	4	-	-	15.0	11	5.0	2.5	10
12	22	18	35.0	10	21.5	42	43	76	40	30	56	32	24	34	5.3	M6	4.3	M5	4	13	28	16.5	11	5.0	2.5	10
16	26	22	42.0	12	26.5	50	53	84	45	36	64	40	28	42	5.3	M6	5.3	M6	4	13	35	21.0	13	5.0	3.0	13
20	32	25	50.0	13	30.0	60	60	104	55	45	76	45	32	50	6.6	M8	6.6	M8	5	18	41	24.0	18	5.0	4.0	16
25	40	30	60.0	15	39.0	74	78	130	70	54	94	60	42	64	8.4	M10	8.4	M10	6	22	49	29.0	22	6.5	5.0	20
30	47	35	70.0	16	43.5	84	87	152	85	62	106	68	52	72	10.5	M12	8.4	M10	6	26	56	34.0	22	8.0	5.0	22
40	62	45	90.0	20	54.0	108	108	176	100	80	124	86	60	90	13.5	M16	10.5	M12	8	34	74	44.0	26	10.0	6.0	28
50	75	50	1,050	20	66.0	130	132	224	125	100	160	108	80	108	13.5	M16	13.5	M16	10	34	89	49.0	35	12.0	8.0	37

Ød	Radial clea	irance (μm)	Load ratings	5 ⁵⁾ (N)	Linear torque	(Nm)
	R1085	R1032	dyn. C	stat. C ₀	dyn. M _L	stat. M _{L0}
(mm)	h6 shaft					
10	-	shaft (lower limit) and set to	1,180	760	17	12
12	+38	p	1,660	980	26	16
	+10	t) a				
16	+38	<u>=</u>	2,430	1,660	18	13
	+10	/er				
20	+43	<u>so</u>	4,010	2,680	84	54
	+11	aft (
25	+43	shs	8,180	4,940	141	86
	+11	h5				
30	+43	t to	9,520	7,140	289	206
	+11	bed				
40	+50	Comes clamped to h5 zero clearance	16,360	11,140	576	374
	+12	s cl lear				
50	+50		23,930	16,560	1,097	725
	+12	Co zer				

- 1) Clamped (fastened) in relation to Ø d.
- 2) Shaft diameter 50: Tolerance ± 0.2
- 3) ISO 4762-8.8 fastening bolts.
- 4) Pin centering.
- 5) Load rating when both linear bushings are under equal load.
 - The load ratings apply for the main load direction.
 - If the load direction is not the main load direction, the load ratings must be multiplied by the following factors:

Ø d 10 to 16: $f = 0.82, f_0 = 0.86$

Ø d 20 to 50: f = 0.82, $f_0 = 0.78$

Note on lubricating R1085 linear sets: Only lubricate on shaft and until lubricant comes out of vent hole.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

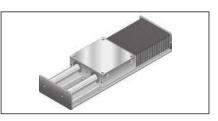
Linear sets with super linear bushings 2, tandem

Linear sets, R1087 Open

Linear sets, R1034 Open, adjustable

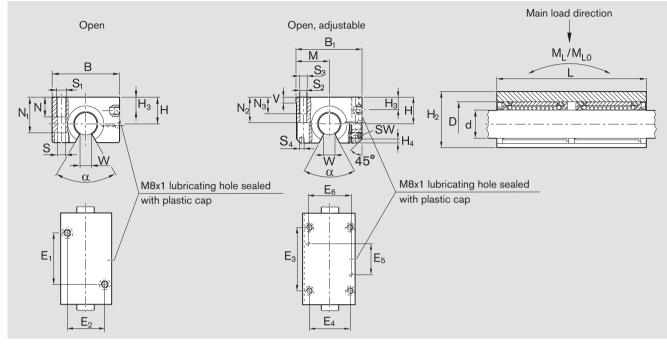
Design

- Lightweight precision tandem housing (aluminum)
- Two super linear bushings 🖾
- Two top wiper seals
- Reference edge (for tandem linear set, open, adjustable)
- Relubricatable



Shaft	Material number	Weight
Ø d (mm)	LSATO-ADD	(kg)
12	R1087 612 20	0.22
16	R1087 616 20	0.34
20	R1087 620 20	0.62
25	R1087 625 20	1.17
30	R1087 630 20	1.68
40	R1087 640 20	3.15
50	R1087 650 20	5.50

Shaft Ø d	Material number LSATOE-A-20-DD	Weight
(mm)		(kg)
12	R1034 612 20	0.22
16	R1034 616 20	0.34
20	R1034 620 20	0.62
25	R1034 625 20	1.17
30	R1034 630 20	1.68
40	R1034 640 20	3.15
50	R1034 650 20	5.50


Also available as linear slides. See R310DE 3001 in the "Linear slides" catalog.

Explanation of sample short product name

LS	Α	то	E	А	20	DD
Linear set	Aluminum	Tandem, open	Adjustable	Super 🗖	Ø 20	Two seals

See page 39 for more information on short product names.

Dimensions (mm)

Dinio		113 ()																									
Ød	D	H ²⁾	H ₂	H ₃	M ²⁾	В	B ₁	L	E1 ³⁾	E ₂ 3)	E ₃ 3)	E ₄ 3)	E_5	E ₆	S4)	S ₁	S2 ⁵⁾	S₃	S4 ⁶⁾	Ν	N ₁	N_2	N_3	v	SW	W7)	H_4
		+0.008			±0.01				±0.15	±0.15	±0.15	±0.15															
		-0.016																									
12	22	18	30 ¹⁾	10	21.5	42	43	76	40	30	56	32	24	34	5.3	M6	4.3	M5	4	13	25	16.5	11	5.0	2.5	6.5	1.5
16	26	22	35	12	26.5	50	53	84	45	36	64	40	28	42	5.3	M6	5.3	M6	4	13	29.5	21.0	13	5.0	2.5	9.0	2.5
20	32	25	42	13	30.0	60	60	104	55	45	76	45	32	50	6.6	M8	6.6	M8	5	18	35.5	24.0	18	5.0	2.5	9.0	3.5
25	40	30	51	15	39.0	74	78	130	70	54	94	60	42	64	8.4	M10	8.4	M10	6	22	43.0	29.0	22	6.5	3.0	11.5	4.0
30	47	35	60	16	43.5	84	87	152	85	62	106	68	52	72	10.5	M12	8.4	M10	6	26	50.5	34.0	22	8.0	3.0	14.0	6.0
40	62	45	77	20	54.0	108	108	176	100	80	124	86	60	90	13.5	M16	10.5	M12	8	34	66.0	44.0	26	10	4.0	19.5	6.0
50	75	50	88	10	66.0	130	132	224	125	100	160	108	80	108	13.5	M16	13.5	M16	10	34	77.0	49.0	35	12	5.0	22.5	6.0

Ød	Angle	Radial clea	arance ⁸⁾ (µm)	Load rating	s ⁹⁾ (N)	Linear torque	e (Nm)
	α	R1087	R1034	dyn. C	stat. C ₀	dyn. M _L	stat. M _{L0}
(mm)	(°)	h6 shaft					
12	66	+28	set to	1,720	1,020	11	7
		-1	se				
16	68	+28	and	2,430	1,660	18	13
		-1	mit)				
20	55	+31	erlii	4,170	2,360	60	47
		-2	No				
25	57	+31	aft (8,180	4,940	141	86
		-2	l sh				
30	57	+31	0 HG	8,150	5,760	163	116
		-2	ad t				
40	56	+35	mpe	14,000	8,960	328	212
		-3	s cla eara				
50	54	+35	Comes clamped to h5 shaft (lower limit) zero clearance	20,300	13,240	630	415
		-3	Co zer				

- 1) H₂ is 28 mm for an open, adjustable linear set.
- 2) Clamped (fastened) in relation to \emptyset d.
- 3) Shaft diameter 50: Tolerance ± 0.2
- 4) DIN 6912-8.8 fastening bolts.
- 5) ISO 4762-8.8 fastening bolts.
- 6) Pin centering.
- 7) Minimum size in relation to \mathcal{O} d.
- 8) Clamped (fastened).
- Load rating when both linear bushings are under equal load. The load ratings apply for the main load direction.

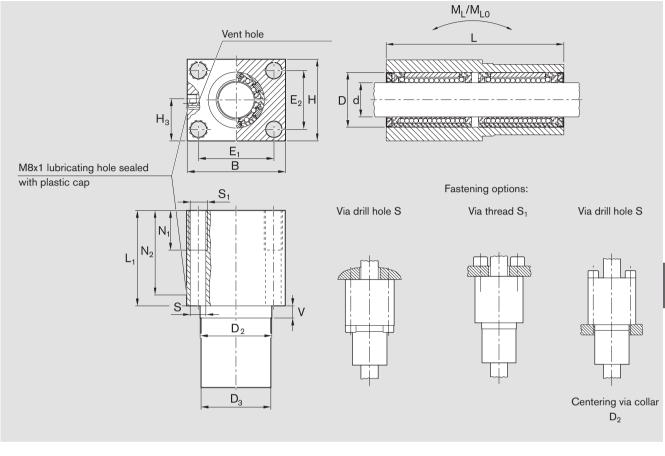
The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Linear sets with super linear bushings 2, tandem

Linear sets, R1083 Flanged

Design

- Precision lightweight flanged housing (aluminum)
- Two super linear bushings 🕰
- Two top wiper seals
- Centering collar
- Thread for bolting from bottom area
- Relubricatable
- Radial clearance not adjustable


Shaft	Material number	Weight
Ø d (mm)	LSAFT-ADD	(kg)
12	R1083 612 20	0.20
16	R1083 616 20	0.32
20	R1083 620 20	0.55
25	R1083 625 20	1.00
30	R1083 630 20	1.50

Explanation of sample short product name

LS	А	FT	Α	20	DD
Linear set	Aluminum	Flanged, tandem	Super 🗖	Ø 20	Two seals

See page 39 for more information on short product names.

-

Dimensions (mm)

Ød	D	D ₂ ¹⁾	D_3	н	H ₃	В	L	L ₁	E ₁	E ₂	S ²⁾	S ₁	N ₁	N_2	v
			-0.1						±0.15	±0.15					
		g7	-0.3												
12	22	30	30	34	19	42	76	46	32	24	5.3	M6	13	36	10
16	26	35	35	40	22	50	84	50	38	28	6.6	M8	18	40	10
20	32	42	42	50	27	60	104	60	45	35	8.4	M10	22	50	10
25	40	52	52	60	32	74	130	73	56	42	10.5	M12	26	63	10
30	47	61	61	70	37	84	152	82	64	50	13.5	M16	34	74	10

Shaft	Radial clear-	Load ratings ³⁾	(N)	Linear torque	(Nm)
Ø d (mm)	ance (μm)	dyn. C	stat. C ₀	dyn. M _L	stat. M _{L0}
	h6 shaft				
12	+38	1,350	840	26	16
	+10				
16	+38	1,660	1,060	35	22
	+10				
20	+43	3,280	2,100	84	54
	+11				
25	+43	6,420	4,360	205	140
	+11				
30	+43	7,800	5,580	289	206
	+11				

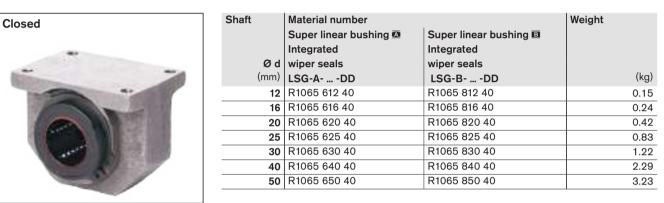
- 1) Recommended installation: Mounting hole D_2^{H7} .
- 2) ISO 4762-8.8 fastening bolts.
- Load rating when both linear bushings are under equal load.

Note on lubrication:

Only lubricate on shaft and until lubricant comes out of vent hole.

The dynamic load ratings are based on a total travel of 100,000 m.

When based on 50,000 m, the C values in the table are multiplied by 1.26.

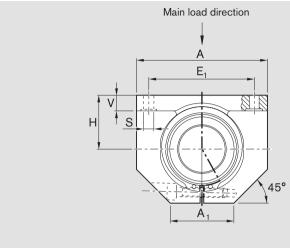

Linear sets with super linear bushings
or
or

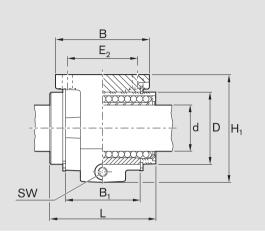
Linear sets, R1065 Closed

Linear sets, R1066 Adjustable

Design

- Precision housing (cast iron/steel)
- Super linear bushing with or without
- misalignment compensation
- Integrated wiper seals


Adjustable


Shaft	Material number		Weight
	Super linear bushing 🖾	Super linear bushing 🗉	
	Integrated	Integrated	
Ød	wiper seals	wiper seals	
(mm)	LSGE-ADD	LSGE-BDD	(kg)
12	R1066 612 40	R1066 812 40	0.15
16	R1066 616 40	R1066 816 40	0.24
20	R1066 620 40	R1066 820 40	0.41
25	R1066 625 40	R1066 825 40	0.79
30	R1066 630 40	R1066 830 40	1.19
40	R1066 640 40	R1066 840 40	2.26
50	R1066 650 40	R1066 850 40	3.15

Explanation of sample short product name

LS	G	E	А	20	DD
Linear set	Cast iron	Adjustable	Super 🗖	Ø 20	Two seals

See page 39 for more information on short product names.

Dimensions	(mm)	

Ød	D	н	H ₁ ¹⁾	L	A ¹⁾	A ₁ ¹⁾	B ¹⁾	B ₁	E ₁	E ₂	S	V ¹⁾	sw
12	22	18	35	32	42	21	32	20	32 ^{±0.15}	23 ^{±0.15}	4.5	5.5	2.5
16	26	22	42	36	50	26	35	22	40 ^{±0.15}	26 ^{±0.15}	4.5	6.5	3.0
20	32	25	50	45	60	28	42	28	45 ^{±0.15}	32 ^{±0.15}	4.5	8.0	3.0
25	40	30	60	58	74	38	54	40	60 ^{±0.15}	40 ^{±0.15}	5.5	9.0	5.0
30	47	35	70	68	84	41	60	48	68 ^{±0.20}	45 ^{±0.20}	6.6	10.0	5.0
40	62	45	90	80	108	51	78	56	86 ^{±0.20}	58 ^{±0.20}	9.0	12.0	6.0
50	75	50	105	100	130	57	70	72	108 ^{±0.20}	50 ^{±0.20}	9.0	14.0	8.0

Shaft	Radial clea	irance (μm)	Tolerance for H ²⁾	Load ratings ³⁾ (N)	
Ød	R1065	R1066	(μm)	dyn. C	stat. C ₀
(mm)	h6 shaft				
12	+38	pu	+8	1,020	490
	+10	shaft (lower limit) and	-16		
16	+38	<u><u> </u></u>	+8	1,500	830
	+10	Ver	-16		
20	+43		+8	2,470	1,340
	+11	aft	-16		
25	+43		+8	5,040	2,470
	+11	h5 Se h5	-16		
30	+43	and	+8	5,860	3,570
	+11	pec	-16		
40	+50	oc	+8	10,070	5,570
	+12	s c zer	-16		
50	+50	Comes clamped to h5 set to zero clearance	+13	14,730	8,280
	+12	Set	-21		

- 1) ISO 8062-3 DCTG 9 tolerance.
- 2) Clamped (fastened) in relation to Ø d.
- 3) The load ratings apply for the main load direction.

If the load direction is not the main load direction, the load ratings must be multiplied by the following factors:

Ø d 12 and 16: $f = 0.82, f_0 = 0.86$

Ø d 20 to 50: f = 0.82, $f_0 = 0.78$

The dynamic load ratings are based on a total travel of 100,000 m.

When based on 50,000 m, the C values in the table are multiplied by 1.26.

Linear sets with super linear bushings
or
or

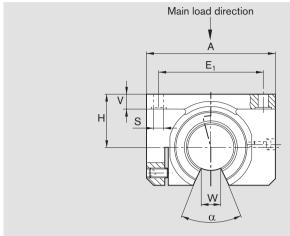
Linear sets, R1067 Open

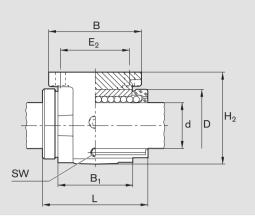
Linear sets, R1068 Open, adjustable

Design

- Precision housing (spheroidal graphite cast iron/steel)
- Secured with locating screw
- Super linear bushing with or without misalignment compensation
- Integrated wiper seals

Shaft	Material number	Weight	
	Super linear bushing 🖾	Super linear bushing 🗉	
	Integrated	Integrated	
Ød	wiper seals	wiper seals	
(mm)	LSGO-ADD	LSGO-BDD	(kg)
12	R1067 612 40	R1067 812 40	0.13
16	R1067 616 40	R1067 816 40	0.20
20	R1067 620 40	R1067 820 40	0.36
25	R1067 625 40	R1067 825 40	0.70
30	R1067 630 40	R1067 830 40	1.05
40	R1067 640 40	R1067 840 40	2.05
50	R1067 650 40	R1067 850 40	2.77




Shaft	Material number		Weight
	Super linear bushing 🖾	Super linear bushing	
	Integrated	Integrated	
Ød	wiper seals	wiper seals	
(mm)	LSGOE-ADD	LSGOE-BDD	(kg)
12	R1068 612 40	R1068 812 40	0.12
16	R1068 616 40	R1068 816 40	0.20
20	R1068 620 40	R1068 820 40	0.36
25	R1068 625 40	R1068 825 40	0.69
30	R1068 630 40	R1068 830 40	1.02
40	R1068 640 40	R1068 840 40	2.02
50	R1068 650 40	R1068 850 40	2.71

Explanation of sample short product name

LS	G	0	А	20	DD
Linear set	Cast iron	Open	Super 🖸	Ø 20	Two seals

See page 39 for more information on short product names.

Dimensio	ons (mm)												_
Ød	D	н	H ₂ ¹⁾	L	A ¹⁾	B ¹⁾	B ₁	E ₁	E ₂	S	V ¹⁾	W ²⁾	SW
12	22	18	28	32	42	32	20	32 ^{±0.15}	23 ^{±0.15}	4.5	5.5	6.5	2.5
16	26	22	35	36	50	35	22	40 ^{±0.15}	26 ^{±0.15}	4.5	6.5	9.0	2.5
20	32	25	42	45	60	42	28	45 ^{±0.15}	32 ^{±0.15}	4.5	8.0	9.0	2.5
25	40	30	51	58	74	54	40	60 ^{±0.15}	40 ^{±0.15}	5.5	9.0	11.5	3.0
30	47	35	60	68	84	60	48	68 ^{±0.20}	45 ^{±0.20}	6.6	10.0	14.0	3.0
40	62	45	77	80	108	78	56	86 ^{±0.20}	58 ^{±0.20}	9.0	12.0	19.5	4.0
50	75	50	88	100	130	70	72	108 ^{±0.20}	50 ^{±0.20}	9.0	14.0	22.5	5.0

0.4	America	Dedial alaa	(um)	Tolerance for H ³⁾	Lood voting of (N	1)
Ød	Angle					
	α	R1067	R1068	(μm)	dyn. C	stat. C ₀
		h6 shaft				
(mm)	(°)					
12	66	+28	t to	+8	1,060	510
		-1	sei	-16		
16	68	+28	and	+8	1,280	630
		-1	nit)	-16		
20	55	+31	erlii	+8	2,570	1,180
		-2	low	-16		
25	57	+31	aft (+8	5,040	2,470
		-2	i sh	-16		
30	57	+31	o hE	+8	5,020	2,880
		-2	ed to	-16		
40	56	+35	mpe	+8	8,620	4,480
		-3	cla	-16		
50	54	+35	Comes clamped to h5 shaft (lower limit) and set to zero clearance	+13	12,500	6,620
		-3	Co	-21		

1) ISO 8062-3 - DCTG 9 tolerance.

2) Minimum size in relation to \emptyset d.

3) Clamped (fastened) in relation to \emptyset d.

4) The load ratings apply for the main load direction.

The dynamic load ratings are based on a total travel of 100,000 m.

When based on 50,000 m, the C values in the table are multiplied by 1.26.

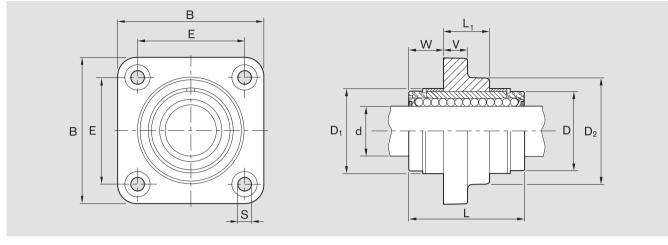
 \triangle Refer to the diagrams on page 41 for load in the direction of opening.

Linear sets with super linear bushings
or
or

Linear sets, R1081 Flanged

Design

- Precision flanged housing (lamellar graphite cast iron)
- Two retaining rings with additional two spacer rings (steel) for shaft diameters 12 to 40
- Super linear bushing with or without misalignment compensation
- Integrated wiper seals
- Radial clearance not adjustable
- No initial lubrication


Shaft	Material number	Weight	
	Super linear bushing 🖾	Super linear bushing 🗉	
Ød	with two wiper seals	with two wiper seals	
(mm)	LSGF-ADD	LSGF-BDD	(kg)
12	R1081 612 40	R1081 812 40	0.095
16	R1081 616 40	R1081 816 40	0.16
20	R1081 620 40	R1081 820 40	0.30
25	R1081 625 40	R1081 825 40	0.57
30	R1081 630 40	R1081 830 40	1.85
40	R1081 640 40	R1081 840 40	1.65
50	R1081 650 40	R1081 850 40	3.40

Explanation of sample short product name

LS	G	F	Α	20	DD
Linear set	Cast iron	Flanged	Super 🗖	Ø 20	Two seals

See page 39 for more information on short product names.

Dimensions

Dimensions	(mm)										Radial clearance (µm)	Load ratings	(N)
Ød	B ¹⁾	L	L ₁	D	D ₁	D ₂ ¹⁾	E	S	V ¹⁾	M	h6 shaft	dyn. C	stat. C ₀
					+0.8			H13					
12	42	32	12	22	24.0	28	30 ^{±0.12}	5.5	6	10.0	+38	830	420
											+10		
16	50	36	15	26	28.5	34	35 ^{±0.12}	5.5	8	10.5	+38	1,020	530
											+10		
20	60	45	18	32	35.0	42	42 ^{±0.15}	6.6	10	13.5	+43	2,020	1,050
											+11		
25	74	58	23	40	43.0	54	54 ^{±0.15}	6.6	12	17.5	+43	3,950	2,180
											+11		
30	84	68	26	47	49.5	62	60 ^{±0.25}	9.0	14	21.0	+43	4,800	2,790
											+11		
40	108	80	36	62	66.5	80	78 ^{±0.25}	11	16	22.0	+50	8,240	4,350
											+12		
50	130	100	72	75	81.0	98	98 ^{±0.25}	11	18	14.0	+50	12,060	6,470
											+12		

1) ISO 8062-3 - DCTG 9 tolerance.

The dynamic load ratings are based on a total travel of 100,000 m.

When based on 50,000 m, the C values in the table are multiplied by 1.26.

Super linear bushings
and
and

Product overview

The benefits

- High-precision linear bushing for moving heavy loads
- _ Steel bearing plates with machined ball guide grooves and machined back for high precision
- Super
 with more tracks than super
- Super
 with even more tracks for maximum load rating and rigidity
- High travel speed (up to 5 m/s)
- Compensates for shaft deflection and misalignment
- Optional integrated wiper seals
- Optional linear seal for open linear bushing
- Linear sets with aluminum housing

R0732 page 84 Super
 (closed)

page 84 R0733 Super 🖸 (open)

R0730 page 86 Super (closed)

page 86

Super (open)

Explanation of short product name

Sample linear	bushing:
---------------	----------

Super linear bushing 3 KBSH-O-20-DD

Definition of codes			KB SH C	20	DD		
Туре	Linear bushing	= KB				VD = Fully sealed	Seals
Series	Super 🖸	= H				DD = With two seals	
	Super 🕮	= SH				D = 1 seal	
Form	Closed	=				= No seals	
	Open	= 0					
Shaft diameter		= 20		_			

R1701 Closed

R1702 page 90 Closed, adjustable

R1703 page 92 Open

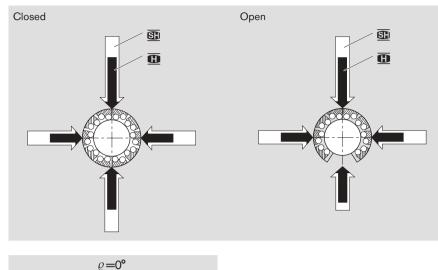
R1704 page Open, adjustable

R1706 page 94 Side opening, adjustable

Sample linear set:

Linear set with super linear bushing LSAH-OE-H-20-DD

Definition of codes			LS A	HOE	H	20	DD		
Туре	Linear set	= LS					VD	= Fully sealed	Seals
Material (housing) (linear	Aluminum	= A						= With two seals	
set only)							DD	No seals	
Form	Heavy-duty	= H		-			20	=	Shaft diameter
	Closed	=					Н	Super 🖸	Series
	Open	= O					SH	Super 🕮	
	Side opening	= S							
	Adjustable	= E							

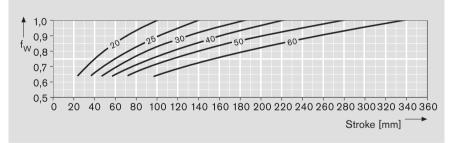

Super linear bushings \blacksquare and \blacksquare

Technical data

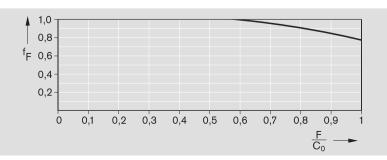
Please observe general technical principles and follow the lubricating and installation instructions.

Installation dimensions/ interchangeability	Super linear bushings and have the same installation dimensions as super linear bushings and as well as standard linear bushings, but differ in terms of secur- ing, radial clearance, load ratings and lubrication.										
Seal	 Double protection through two-sided wiper seals: Outer sealing lip prevents dirt from entering Inner sealing lip prevents lubricant from escaping The wiper seals float inside closed linear bushings. This makes them perfect for any operating state. The open linear bushings are fully sealed with additional side seals along the shaft. All seals can be replaced. 										
Friction	The friction coefficients μ of the unsealed super linear bushings are 0.001 – 0.004 when lubricated with oil. The friction coefficient is lowest under high load. It can also be greater than the indicated value under low loads. The table shows the friction generated by super linear bushings with integrated wiper seals on both ends when not under radial load. They depend on speed and lubrication.										
	Shaft	Closed and open		Open							
	Ød	Integrated wiper se	als	Fully sealed							
	(mm)	Breakaway force	Friction	Breakaway force	Friction						
	(mm) 20	Reference value (N) 5	Reference value (N) 2.5	Reference value (N) 7.5							
	20	7	3.0	10.5	4.0						
	30	9	4.0	13.5	6.0						
	40	12	5.0	18.0	7.5						
	50	15	6.0	22.5	9.0						
	60	18	7.0	27.0	10.5						
Speed Acceleration	v _{max} = a _{max} =	5 m/s 150 m/s²									
Operating temperature	-20 °C	to 80 °C									
Initial lubrication	Super linear bushings \textcircled{O} and \textcircled{O} do not come prelubricated. Grease linear bush- ings before use, see "Initial lubrication" Section "Lubrication" on page 21. Service life data is based on initial lubri- cation and relubricated linear bushings.										

Effect of load direction on load rating


Main load directions

Load direction factors

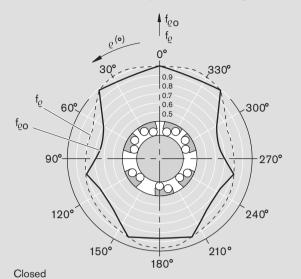

The load ratings C and C₀ apply for the load direction $\rho = 0^{\circ}$. For all other load directions, the load ratings must be multiplied by the factors f_{ρ} (dynamic load rating) or f_{ρ_0} (static load rating C₀).

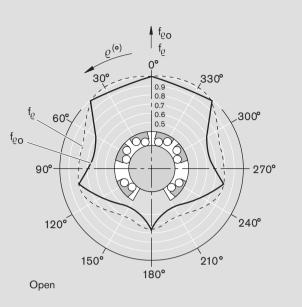
Load direction factor fp Shaft Ød Super linear bushing Super linear bushing 🕮 (mm) 4 20-25 0.80 0.98 0.80 0.67 0.79 0.79 0.52 1 1 1 1 1 0.59 30-60 0.70 0.91 1 0.70 0.62 1 0.86 1 0.86 1 1 Load direction factor fp0 0.70 0.68 0.50 20-25 1 0.70 0.87 1 0.67 1 0.68 1 1 30-60 0.62 0.80 0.62 0.61 0.83 0.83 0.55 1 1 1 1 1

180°

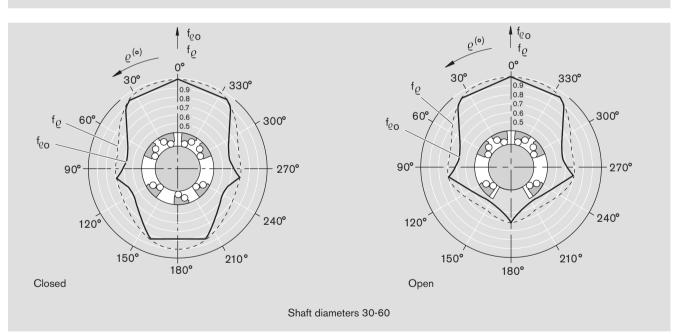
The load rating is reduced under heavy load F. The dynamic load rating must be multiplied by the load factor $\rm f_{\rm F}$

Reduced load rating with short stroke


When short stroke is present, the service life of the shaft is less than that of the super linear bushing. The load ratings C in the tables must therefore be multiplied by the factor f_W .


Reduced load rating with heavy load

Super linear bushings
and
and
and


Technical data

Load direction factors for super linear bushing

Shaft diameters 20-25

Super linear bushings can installed in any location.

Choose a location that ensures that the main load direction is always $\rho = 0^{\circ}$.

 $f_{\varrho o}$

fę

,330°

. 210°

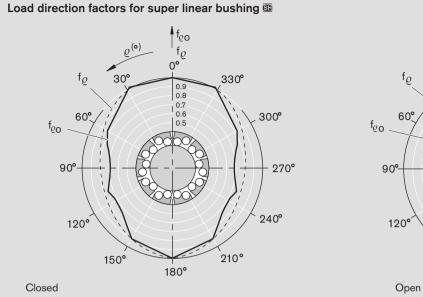
,300°

240°

270°

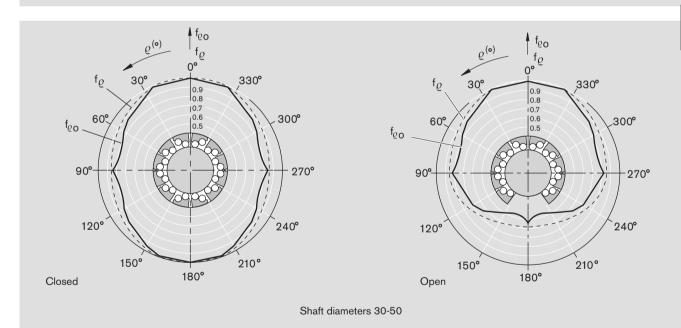
0°

0.9 0.8

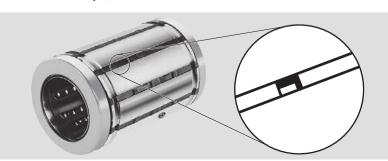

0.7

0.6 0.5

180°


 $\varrho^{(\mathbf{o})}$

30°


150°

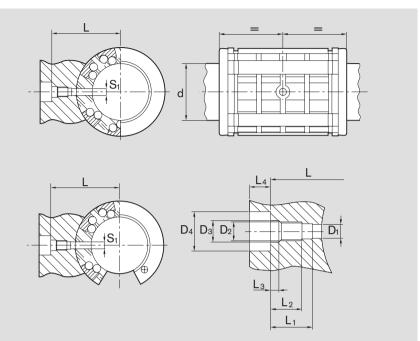
Shaft diameters 20-25

Super linear bushings can installed in any location. Choose a location that ensures that the main load direction is always $\rho = 0^{\circ}$.

The main load direction $\rho = 0^{\circ}$ (maximum load rating) is designated in a closed super linear bushing 1 by a recess in the plastic cage (see enlarged).

Super linear bushings \blacksquare and \blacksquare

Customer-built housings


Securing

Super linear bushing

Secured with locating screw via locating hole S_1 .

Note on installation

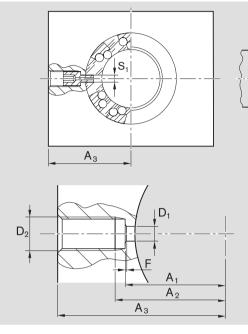
Note the position of the steel bearing plates to the locating hole S_1 .

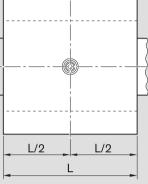
Shaft	Dimens	sions (mr	m)				Locating screw					
											Material number	Tightening torque
Ød	S ₁	L	L ₁	L ₂	L ₃	L_4	D ₁	D ₂	D ₃	D ₄		(Nm)
(mm)		±0.1	+0.2	+0.2	+0.2	min.	+0.1		H13	H13		
20	3.0	27.0	9	7.0	2.0	3.2	3.1	M4	4.5	8	R3427 008 09	1.9
25	3.5	33.5	11	8.5	2.3	4.0	3.6	M5	5.5	10	R3427 003 09	3.8
30	3.5	37.0	11	8.5	2.3	4.0	3.6	M5	5.5	10	R3427 003 09	3.8
40	3.5	44.5	11	8.5	2.3	4.0	3.6	M5	5.5	10	R3427 003 09	3.8
50	4.5	59.5	17	14.0	3.0	4.7	4.6	M6	6.6	11	R3427 004 09	6.7
60	6.0	72.5	22	18.0	4.0	6.0	6.2	M8	9.0	15	R3427 007 09	16.0

Super linear bushings \blacksquare and \blacksquare

Customer-built housings

Relubrication and securing

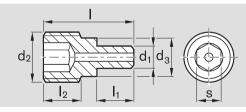

Super linear bushing (closed)


Relubrication and securing via locating hole S_1 . Dimensions for customer-built housings.

Note on installation:

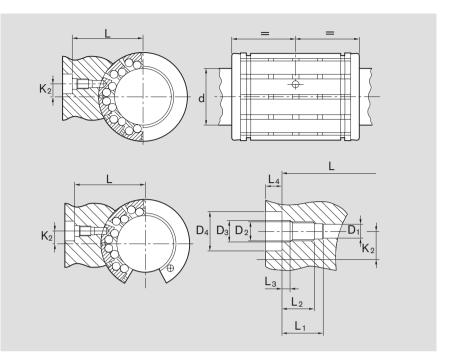
Note the position of the steel bearing plates to the locating hole S_1 .

The lubricating channels shown are designed for grease. When lubricating with oil, make sure all rolling bearings have been reached.



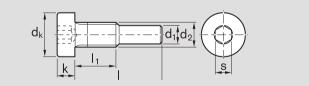
Material number Super linear	Dimens	sions (m	m)					Hollow bolt Material number	Tightening torque	
bushing 🖸	S ₁	L	D_1	D ₂	A ₁	A ₂	A ₃	F		(Nm)
		min.	+0.1		±0.1	max.	min.			
R0732 220 40	3.0	46	3.1	M8x1	18.5	20.5	31.0	0.3x45°	R3432 010 00	5.5
R0732 225 40	3.5	59	3.6	M8x1	22.5	25.0	38.0	0.3x45°	R3432 007 00	5.5
R0732 230 40	3.5	69	3.6	M8x1	26.0	28.5	41.5	0.3x45°	R3432 007 00	5.5
R0732 240 40	3.5	81	3.6	M8x1	33.5	36.0	49.0	0.3x45°	R3432 007 00	5.5
R0732 250 40	4.5	101	4.6	M8x1	42.0	44.5	59.0	0.3x45°	R3432 008 00	5.5
R0732 260 40	6.0	126	6.2	M10x1	51.0	53.5	71.5	0.3x45°	R3432 009 00	9.5

Hollow bolt


for relubricating and securing super linear bushing III (closed) via locating hole S₁.

Dimensi	ons (m	ım)				Hollow bolt			
						Material number	Tightening torque		
d ₂	d ₁	d ₃	I	I ₁	₂	s		(Nm)	
M8x1	3.0	6.5	10.5	5.0	3.5	4	R3432 010 00	5.5	
M8x1	3.5	6.5	14.5	6.0	5.6	4	R3432 007 00	5.5	
M8x1	4.5	6.5	18.0	8.0	7.0	4	R3432 008 00	5.5	
M10x1	6.0	8.5	25.0	11.5	10.2	5	R3432 009 00	9.5	

Super linear bushing 🕮

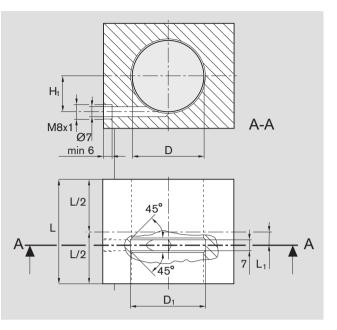

Secured with locating screw.

Shaft	Dimens	ions					Locating screw					
							Material number	Tightening torque				
Ød	L	K ₂	L ₁	L ₂	L ₃	L_4	D ₁	D_2	D_3	D_4		(Nm)
(mm)	+0.2		+0.2	min.	+0.2	min.	+0.1		H13	H13		
20	26.85	1.3	9	7.0	2.0	3.2	2.6	M4	4.5	8	R3427 001 09	1.9
25	30.75	2.0	9	7.0	2.0	3.2	2.6	M4	4.5	8	R3427 001 09	1.9
30	38.15	7.0	11	8.5	2.3	4.0	3.6	M5	5.5	10	R3427 003 09	3.8
40	44.75	9.5	11	8.5	2.3	4.0	3.6	M5	5.5	10	R3427 003 09	3.8
50	59.75	10.0	17	14.0	3.0	4.7	4.6	M6	6.6	11	R3427 004 09	6.7

Locating screw

for securing super linear bushing \blacksquare and $\blacksquare.$

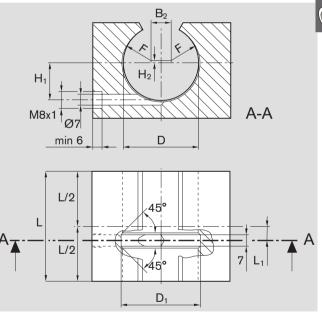
Dimen	sions (I	mm)					Locating screw				
							Material number	Tightening torque			
d ₂	d _k	d_1	I	I_1	k	s		(Nm)			
M4	7.0	2.5	12.0	6.3	2.8	2.5	R3427 001 09	1.9			
M4	7.0	3.0	14.1	6.5	2.8	2.5	R3427 008 09	1.9			
M5	8.5	3.5	17.0	8.0	3.5	3.0	R3427 003 09	3.8			
M6	10.0	4.5	26.0	13.5	4.0	4.0	R3427 004 09	6.7			
M8	13.0	6.0	33.0	17.0	5.0	5.0	R3427 007 09	16.0			


Other dimensions as per DIN 7984.

Relubrication

Super linear bushing (closed) Lubricating channel, radial groove and connection thread for greasing.

Dimensions for customer-built housings.


Material number	Dimens	Dimensions (mm)							
Super linear bushing 🕮	D	L	L ₁	H ₁	D ₁				
		min.	+0.5		±0.2				
R0730 220 40	32	46	7.0	16.0	34				
R0730 225 40	40	59	8.5	20.0	42				
R0730 230 40	47	69	8.5	23.5	50				
R0730 240 40	62	81	10.5	31.0	66				
R0730 250 40	75	101	11.5	37.5	79				

Super linear bushing 0 and s (open)

Lubricating channel, radial groove and connection thread for greasing.

Dimensions for customer-built housings.

Material number		Dimensions (mm)										
Super linear bush	ning	D	L	L ₁	H ₁	D ₁	B ₂	H ₂	F			
0	<u>8</u>		min.	+0.5		±0.2						
R0733 220 45	R0731 220 45	32	46	7.0	16.0	34	8.0	-	R13			
R0733 225 45	R0731 225 45	40	59	8.5	20.0	42	11.9	0.5	R15			
R0733 230 45	R0731 230 45	47	69	8.5	23.5	49	12.8	1.0	R18			
R0733 240 45	R0731 240 45	62	81	10.5	31.0	66	19.9	1.1	R23			
R0733 250 45	R0731 250 45	75	101	11.5	37.5	79	22.6	2.0	R28			
R0733 260 45	-	90	126	13.0	45.0	94	30.8	3.0	R31.5			

Super linear bushings, R0732 Closed

Super linear bushings, R0733 Open

Design

- POM ball retainer

- Hardened steel bearing plates with machined ball guide grooves and machined back
- Balls made of rolling bearing steel
- Compensate for misalignments of up to 30 ft
- Two metal retaining rings
- Optional double-lipped wiper seals
- Optional linear seal

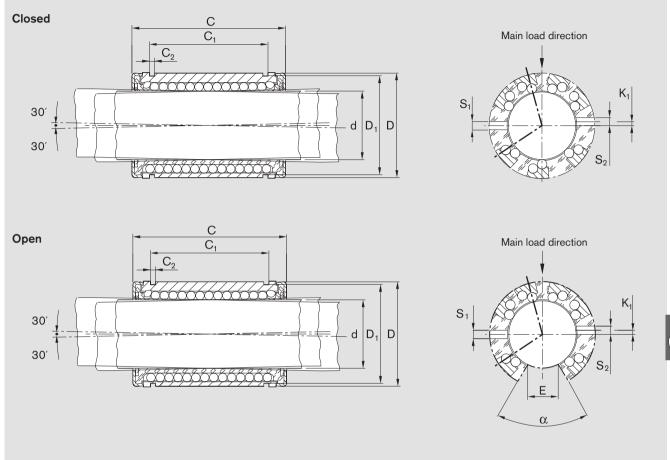
See "Technical data – Load direction factors" for exact values for the 4 main load directions.

Closed	1
	-

Shaft	Material number				Weight
	No	2	Hollow bolt ¹⁾	Locating screw ²⁾	
Ød	Wiper seal	wiper seals			
(mm)	KBH	KBHDD			(kg)
20	R0732 020 00	R0732 220 40	R3432 010 00	R3427 008 09	0.070
25	R0732 025 00	R0732 225 40	R3432 007 00	R3427 003 09	0.150
30	R0732 030 00	R0732 230 40	R3432 007 00	R3427 003 09	0.210
40	R0732 040 00	R0732 240 40	R3432 007 00	R3427 003 09	0.400
50	R0732 050 00	R0732 250 40	R3432 008 00	R3427 004 09	0.700
60	R0732 060 00	R0732 260 40	R3432 009 00	R3427 007 09	1.200

1 wiper seal: R0732 1 ... 40 or R0733 1 ... 40

Shaft	Material number				Weight
	No	2	Fully sealed	Locating screw ²⁾	
Ød	Wiper seal	wiper seals			
(mm)	KBH-O	KBH-O DD	KBH-O VD		(kg)
20	R0733 020 00	R0733 220 40	R0733 220 45	R3427 008 09	0.060
25	R0733 025 00	R0733 225 40	R0733 225 45	R3427 003 09	0.130
30	R0733 030 00	R0733 230 40	R0733 230 45	R3427 003 09	0.180
40	R0733 040 00	R0733 240 40	R0733 240 45	R3427 003 09	0.350
50	R0733 050 00	R0733 250 40	R0733 250 45	R3427 004 09	0.600
60	R0733 060 00	R0733 260 40	R0733 260 45	R3427 007 09	1.000


1) See page 81 for dimensions

2) See page 82 for dimensions

KB	КВ Н		20	DD	
Linear bushing	Super 匝	Open	Ø 20	Two seals	

See page 74 for more information on short product names.

Dimensions

Dime	nsior	ns (mn	n)							Rows of balls Angle		Radial clearance (µm)			Load ratings ²⁾ (N)		
Ød	D	C	C ₁	C ₂	D ₁	S ₁ ¹⁾	S ₂ ¹⁾	K ₁	E ²⁾	\square	$ \bigcirc $	α	Shaft/b	ore		dyn. C	stat. C ₀
		h13	H13			+0.1	+0.1				$ \lor \mathcal{D} $	(°)	h6/H7	h6/K7	h6/M7		
20	32	45	31.2	1.6	30.5	3.0	-	-	9.5	7	6	60	+43	+25	+18	2,520	1,880
													+11	-7	-14		
25	40	58	43.7	1.85	38.5	3.5	3	-1.5	12.0	7	6	60	+43	+25	+18	4,430	3,360
													+11	-7	-14		
30	47	68	51.7	1.85	44.5	3.5	3	2.0	12.8	7	6	60	+43	+25	+18	6,300	5,230
													+11	-7	-14		
40	62	80	60.3	2.15	59.0	3.5	3	1.5	16.8	7	6	60	+50	+29	+20	9,680	7,600
													+12	-7	-18		
50	75	100	77.3	2.65	72.0	4.5	5	2.5	22.1	7	6	60	+50	+29	+20	16,000	12,200
													+12	-7	-18		
60	90	125	101.3	3.15	86.5	6.0	-	-	27.0	7	6	60	+56	+31	+21	23,500	18,700
													+14	-11	-21		

1) Holes at center of dimension C

2) Minimum size in relation to \emptyset d

3) The load ratings apply for the main load direction

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

 Δ Refer to the diagrams on page 78 for load in the direction of opening.

Super linear bushings, R0730 Closed

Super linear bushings, R0731 Open

Design

- POM ball retainer

 Hardened steel bearing plates with machined ball guide grooves and machined back

- Balls made of rolling bearing steel
- Compensate for misalignments of up to 30 ft
- Two metal retaining rings
- Optional double-lipped wiper sealsOptional linear seals

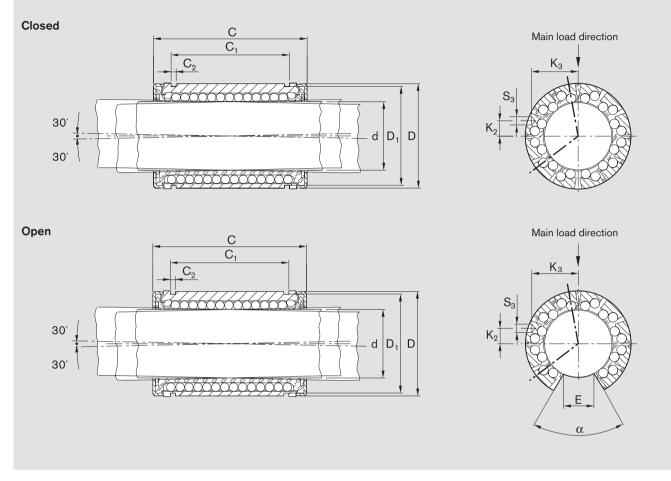
See "Technical data – Load direction factors" for exact values for the 4 main load directions.

Shaft	Material number			Weight
Ød	No wiper seal	With two wiper seals	Locating screw	
(mm)	KBSH	KBSHDD		(kg)
20	R0730 020 00	R0730 220 40	R3427 001 09	0.009
25	R0730 025 00	R0730 225 40	R3427 001 09	0.190
30	R0730 030 00	R0730 230 40	R3427 003 09	0.300
40	R0730 040 00	R0730 240 40	R3427 003 09	0.600
50	R0730 050 00	R0730 250 40	R3427 004 09	1.050

1 wiper seal: R0730 1 ... 40 or R0731 1 ... 40.

Shaft	Material number				Weight
	No wiper seal	2	Fully sealed	Locating screw	
Ød		wiper seals			
(mm)	KBSH-O	KBSH-ODD	KBSH-O VD		(kg)
20	R0731 020 00	R0731 220 40	R0731 220 45	R3427 001 09	0.075
25	R0731 025 00	R0731 225 40	R0731 225 45	R3427 001 09	0.160
30	R0731 030 00	R0731 230 40	R0731 230 45	R3427 003 09	0.250
40	R0731 040 00	R0731 240 40	R0731 240 45	R3427 003 09	0.500
50	R0731 050 00	R0731 250 40	R0731 250 45	R3427 004 09	0.900

1) See page 81 for dimensions


2) See page 82 for dimensions

Explanation of sample short product name

KB	SH	0	20	DD
Linear bushing	Super 🕮	Open	Ø 20	Two seals

See page 74 for more information on short product names.

Dimensions

Dime	nsion	s (mm)							Rows of balls Angle		Radial clearance (µm)			Load ratings ²⁾ (N)		
Ød	D	С	C ₁	C ₂	D ₁	S ₃ ¹⁾	K_2	K ₃	E ²⁾	\square	α Shaft/bore			dyn. C	stat. C ₀		
		h13	H13			+0.1					$\bigcirc \bigcirc$	(°)	h6/H7	h6/K7	h6/M7		
20	32	45	31.2	1.60	30.5	3.0	1.3	14.7	9.5	10	8	60	+43	+25	+18	3,530	2,530
													+11	-7	-14		
25	40	58	43.7	1.85	38.5	3.5	2.0	18.5	12.0	10	8	60	+43	+25	+18	6,190	4,530
													+11	-7	-14		
30	47	68	51.7	1.85	44.5	3.5	7.0	21.0	12.8	12	10	60	+43	+25	+18	6,300	7,180
													+11	-7	-14		
40	62	80	60.3	2.15	59.0	3.5	9.5	27.5	16.8	12	10	60	+50	+29	+20	13,500	10,400
													+12	-7	-18		
50	75	100	77.3	2.65	72.0	4.5	10.0	33.5	22.1	12	10	60	+50	+29	+20	22,300	16,800
													+12	-7	-18		

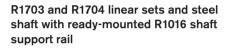
1) Hole at center of dimension C

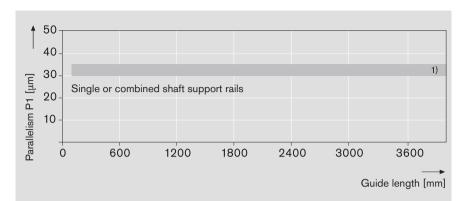
2) Minimum size in relation to Ø d

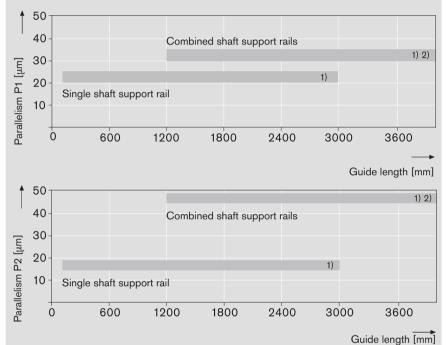
3) The load ratings apply for the main load direction

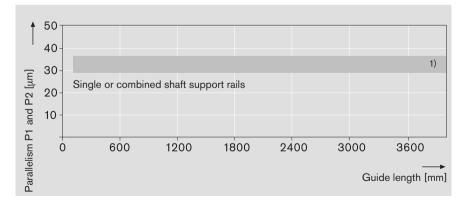
The dynamic load ratings are based on a total travel of 100,000 m.

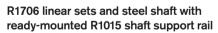
When based on 50,000 m, the C values in the table are multiplied by 1.26.

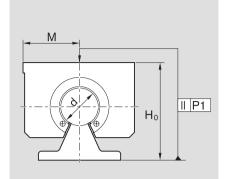

 Δ Refer to the diagrams on page 79 for load in the direction of opening.

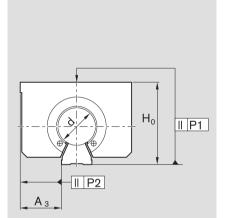

Linear sets with super linear bushings
or
or


Technical data


Tolerances and guide parallelism in operation


R1703 and R1704 linear sets and steel shaft with ready-mounted R1014 shaft support rail





1) See "Tolerances" table for exact values.

2) Shaft support rail consists of multiple parts of same type.

	Shaft	Shaft Ø d (mm)					
	tolerance	20	30	40	60		
	zone	25		50			
$\widehat{[E]}_{J}$ Dimension $H_0^{(3)}$ ⁽⁶⁾	h6	+18	+18	+18	+18		
		-39	-39	-42	-45		
S O	h7	+18	+18	+18	+18		
		-47	-47	-51	-56		
o Barallelism P1 ^{4) 6)} ס	h6	30	30	32	33		
P	h7	32	32	35	35		

		Shaft		Sh	aftØd(n	nm)	
		tolerance	20	25	30	40	50
		zone					
	Dimension H ₀ ²⁾	h6	+28	+28	+28	+28	+28
	Multiple shaft support rails		-69	-69	-69	-72	-72
		h7	+28	+28	+28	+28	+28
			-77	-77	-77	-81	-81
	Dimension H ₀ ²⁾	h6	57	57	57	60	60
	Single shaft support rail	h7	65	65	65	67	69
(mŋ)	Parallelism P14)	h6	30	30	30	32	32
ਸ) (Combined shaft support rails	h7	32	32	32	35	35
Folerances ⁵⁾	Parallelism P14)	h6	20	20	20	22	22
ро	Single shaft support rail	h7	22	22	22	25	25
era	Parallelism P2 ⁴⁾	h6	45	45	45	46	46
2	Combined shaft support rails	h7	46	46	46	48	48
	Parallelism P2 ⁴⁾	h6	15	15	15	16	16
	Single shaft support rail	h7	16	16	16	18	18
	Dimension A ₃ ²⁾	h6	+30	+30	+30	+30	+30
			-37	-37	-37	-38	-38
		h7	+30	+30	+30	+30	+30
			-41	-41	-41	-43	-43

		Shaft		Sh	aft Ø d (n	nm)	
		tolerance	20	25	30	40	50
		zone					
	Dimension H ₀ ^{2), 6)}	h6	+20	+20	+20	+20	+20
			-35	-35	-35	-36	-36
		h7	+20	+20	+20	+20	+20
(mŋ)			-39	-39	-39	-41	-41
	Dimension A ₃ ²⁾	h6	+20	+20	+20	+21	+21
es			-33	-33	-33	-37	-37
ũ		h7	+20	+20	+20	+21	+21
lolerances ⁵⁾			-41	-41	-41	-46	-46
P	Parallelism P1 ^{4), 6)}	h6	29	29	29	30	30
		h7	30	30	30	32	32
	Parallelism P2 ^{4), 6)}	h6	29	29	29	34	34
		h7	31	31	31	37	37

3) Measured from center of housing.

4) With clamped and fastened guide.

5) The tolerances apply for the set with shaft and shaft support rail.

6) Single or combined shaft support rails

Linear sets with super linear bushings
or
or

Linear sets, R1701 Closed

Linear sets, R1702 Adjustable

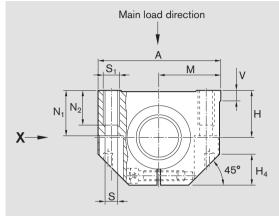
Design

- Precision housing (aluminum)

- Super linear bushing
 or
 or
- Compensate for misalignments of up to 30 ft
- Integrated wiper seals
- Secured with bolt
- Relubricatable

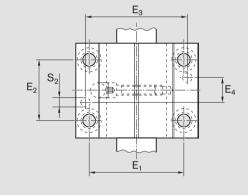
See "Technical data – Load direction factors" for exact values for the 4 main load directions.

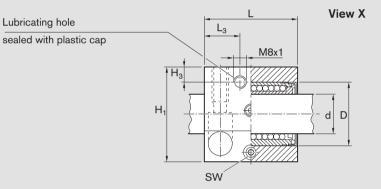
Shaft	Material number		Weight (kg)					
	Super linear bushin	g	Super linear bushing					
Ød	Φ	<u>s</u>	Ō	<u>8</u>				
(mm)	LSAH-HDD	LSAH-HDD						
20	R1701 220 20	R1701 420 20	0.29	0.31				
25	R1701 225 20	R1701 425 20	0.58	0.63				
30	R1701 230 20	R1701 430 20	0.88	0.97				
40	R1701 240 20	R1701 440 20	1.63	1.86				
50	R1701 250 20	R1701 450 20	2.70	3.10				
60	R1701 260 20	-	5.20	_				


Shaft	Material number		Weight (kg)					
	Super linear bushir	ng	Super linear bushing					
Ød	0	<u>S</u>	Ō	<u>S1</u>				
(mm)	LSAHE-HDD	LSAHE-SHDD						
20	R1702 220 20	R1702 420 20	0.29	0.31				
25	R1702 225 20	R1702 425 20	0.58	0.63				
30	R1702 230 20	R1702 430 20	0.88	0.97				
40	R1702 240 20	R1702 440 20	1.63	1.86				
50	R1702 250 20	R1702 450 20	2.70	3.10				
60	R1702 260 20	-	5.20	-				

Explanation of sample short product name

LS	А	HE	Н	20	DD
Closed linear set	Aluminum	Heavy-duty, adjustable	Super linear bushing 🖽	Ø 20	Two seals


See page 75 for more information on short product names.


Dimensions

Super linear bushing Lubricating hole sealed with plastic cap M8x1 (\emptyset d 20–50 mm) View X M10x1 (\emptyset d = 60 mm) H₁ H₁ SW

Super linear bushing 🕮

Dimensions (mm)

Ød	D	H ¹⁾	H_1	M ¹⁾	Α	L	E ₁	E ₂	E3	E_4	S	S ₁	S ₂	N_1	N_2	H ₃	L ₃	V	SW	H_4
		+0.008		±0.01																
		-0.016																		
20	32	25	50	30.0	60	46	45 ^{±0.15}	32 ^{±0.15}	50	15	6.6	M8	5	24	18	10.0	16	5.0	4	16
25	40	30	60	39.0	78	59	60 ^{±0.15}	40 ^{±0.15}	64	17	8.4	M10	6	29	22	10.0	21	6.5	5	20
30	47	35	70	43.5	87	69	68 ^{±0.15}	45 ^{±0.15}	72	20	8.4	M10	6	34	22	11.5	26	8.0	5	22
40	62	45	90	54.0	108	81	86 ^{±0.15}	58 ^{±0.15}	90	25	10.5	M12	8	44	26	14.0	30	10.0	6	28
50	75	50	105	66.0	132	101	108 ^{±0.20}	50 ^{±0.20}	108	85	13.5	M16	10	49	34	12.5	39	12.0	8	37
60	90	60	125	82.0	164	126	132 ^{±0.20}	65 ^{±0.20}	132	108	17.5	M20	12	59	42	-	-	13.0	10	45

Shaft	Radial clear	ance ²⁾ (µm)	Load ratings ²) (N)									
Ød	R1701	R1702	Super linear l	bushing									
	Shaft			Ð		<u>81</u>							
(mm)	h6		dyn. C stat. C ₀ d	dyn. C	stat. C ₀								
20	+43	e	2,520	1,880	3,530	2,530							
	+11	anc											
25	+43	shaft zero clearance	4,430	3,360	6,190	4,530							
	+11	o c											
30	+43	shaft zero o	6,300	5,230	8,800	7,180							
	+11	h5 to											
40	+50	sel sel		d to d set	d to d set	d to	d to d se	d to d set	d to d se	9,680	7,600	13,500	10,400
	+12	oec and											
50	+50	clamped mit) and	16,000	12,200	22,300	16,800							
	+12	s cla											
60	+56	Comes (lower li	23,500	18,700	-	-							
	+14	(lo Co											

- 1) Clamped (fastened) in relation to \emptyset d.
- 2) Clamped (fastened).
- The load ratings apply for the main load direction.

The dynamic load ratings are based on total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26. Linear sets with super linear bushings
or
or

Linear sets, R1703 Open

Linear sets, R1704 Open, adjustable

Design

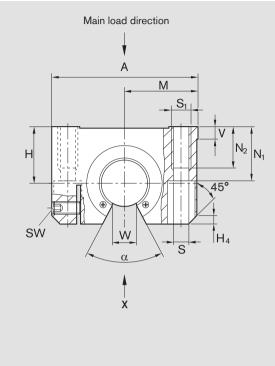
- Precision housing (aluminum)

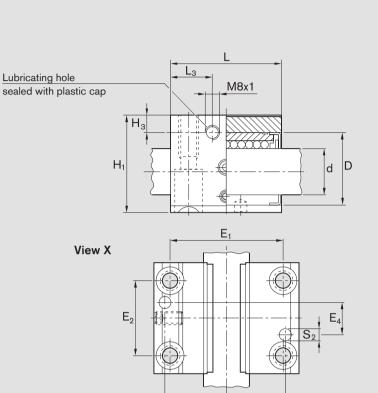
- Super linear bushing
 or
 or
- Compensate for misalignments of up to 30 ft
- Fully sealed
- Secured with bolt
- Relubricatable

See "Technical data – Load direction factors" for exact values for the 4 main load directions.

Shaft	Material number		Weight (kg)				
	Super linear bushing	9 ¹⁾	Super linear bush	ning			
Ød	Φ	<u>S</u>	Ō	<u>s</u>			
(mm)	LSAHO-HVD	LSAHO-SHVD					
20	R1703 220 70	R1703 420 70	0.24	0.26			
25	R1703 225 70	R1703 425 70	0.48	0.51			
30	R1703 230 70	R1703 430 70	0.72	0.79			
40	R1703 240 70	R1703 440 70	1.38	1.56			
50	R1703 250 70	R1704 450 70	2.30	2.60			
60	R1703 260 70	-	4.40	-			

Shaft	Material number		Weight (kg)					
	Super linear bushing	J ¹⁾	Super linear bushing					
Ød	0	<u>S</u>	Ō	<u>S</u>				
(mm)	LSAHOE-HVD	LSAHOE-SHVD						
20	R1704 220 70	R1704 420 70	0.24	0.26				
25	R1704 225 70	R1704 425 70	0.48	0.51				
30	R1704 230 70	R1704 430 70	0.72	0.79				
40	R1704 240 70	R1704 440 70	1.38	1.56				
50	R1704 250 70	R1704 450 70	2.30	2.60				
60	R1704 260 70	-	4.40	_				


1) Fully sealed, relubricatable


Explanation of sample short product name

LS	А	HOE	Н	20	VD
Linear set	Aluminum	Heavy-duty, open, adjustable	Super linear bushing 🖲	Ø 20	Fully sealed

See page 75 for more information on short product names.

Dimensions

Dime	Dimensions (mm)																				
Ød	D	H ¹⁾	H_1	M ¹⁾	Α	L	E ₁	E ₂	E ₃	E ₄	S	S ₁	S ₂	N ₁	N_2	H_3	L ₃	V	SW	М	H ₄
		+0.008		±0.01																	
		-0.016																			
20	32	25	42	30.0	60	46	45 ^{±0.15}	$32^{\pm 0.15}$	50	15	6.6	M8	5	24	18	10.0	16	5.0	2.5	9.5	3.5
25	40	30	51	39.0	78	59	60 ^{±0.15}	40 ^{±0.15}	64	17	8.4	M10	6	29	22	10.0	21	6.5	3.0	12.0	4.0
30	47	35	60	43.5	87	69	68 ^{±0.15}	45 ^{±0.15}	72	20	8.4	M10	6	34	22	11.5	26	8.0	3.0	12.8	6.0
40	62	45	77	54.0	108	81	86 ^{±0.15}	58 ^{±0.15}	90	25	10.5	M12	8	44	26	14.0	30	10.0	4.0	16.8	6.0
50	75	50	88	66.0	132	101	108 ^{±0.20}	50 ^{±0.20}	108	85	13.5	M16	10	49	34	12.5	39	12.0	5.0	22.1	6.0
60	90	60	105	82.0	164	126	132 ^{±0.20}	$65^{\pm 0.20}$	132	108	17.5	M20	12	59	42	15.0	50	13.0	6.0	27.0	5.0

Shaft	Angle	Radial cleara	ance²) (µm)	Load rating	s ²) (N)		
Ød	α	R1073	R1074	Super linea	r bushing		
		Shaft			Œ		5
(mm)	(°)	h6		dyn. C	stat. C ₀	dyn. C	stat. C ₀
20	54	+31	e	2,520	1,880	3,530	2,530
		-2	rano				
25	55	+31	lea	4,430	3,360	6,190	4,530
		-2	shaft zero c				
30	60	+31	sha	6,300	5,230	8,800	7,180
		-2	ped to h5 shaft and set to zero clearance				
40	60	+35	se	9,680	7,600	13,500	10,400
		-3	pecand				
50	52	+35		16,000	12,200	22,300	16,800
		-3	lim s c				
60	55	+39	Comes clan (lower limit)	23,500	18,700	-	-
		-4	ê C				

- 1) Clamped (fastened) in relation to Ø d.
- 2) Clamped (fastened).

 E_3

The load ratings apply for the main load direction.

The dynamic load ratings are based on total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

A Refer to the diagrams on page 78 and page 79 for load in the direction of opening.

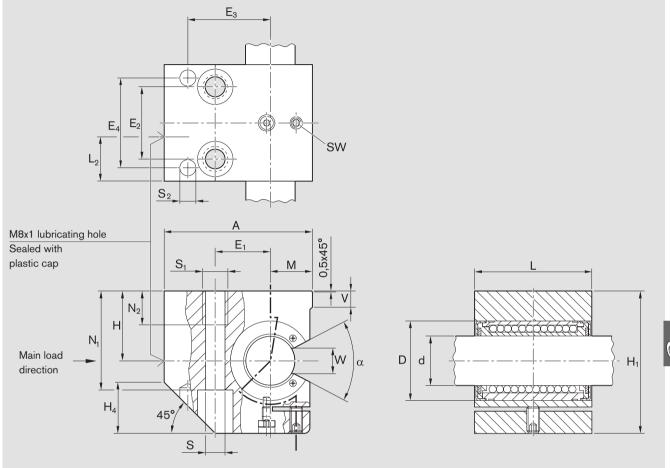
Linear sets, R1706 Side opening, adjustable

Design

- Precision housing (aluminum)
- Super linear bushing
 or
- Compensate for misalignments of up to 30 ft
- Fully sealed
- Secured with bolt
- Relubricatable

See "Technical data – Load direction factors" for exact values for the 4 main load directions.

Shaft	Material number		Weight (kg)					
	Super linear bushing	J ¹⁾	Super linear bushing					
Ø	1 0	<u> </u>	Ξ	<u> </u>				
(mm	LSAHSE-HVD	LSAHSE-SHVD						
2	R1706 220 70	R1706 420 70	0.35	0.37				
2	5 R1706 225 70	R1706 425 70	0.70	0.73				
3	R1706 230 70	R1706 430 70	1.03	1.10				
40) R1706 240 70	R1706 440 70	1.80	1.95				
5) R1706 250 70	R1706 450 70	3.00	3.25				


1) Fully sealed, relubricatable

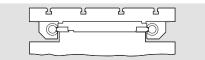
Explanation of sample short product name

LS	А	HSE	Н	20	VD
Linear set	Aluminum	Heavy-duty, side opening, adjustable	Super linear bushing 🖲	Ø 20	Fully sealed

See page 75 for more information on short product names.

Dimensions

Dimer	Dimensions (mm)																			
Ød	D	H ¹⁾	H_1	M ¹⁾	Α	L	E ₁	E ₂	E ₃	E ₄	S	S ₁	S ₂	N ₁	N_2	L ₂	V	SW	М	H_4
		+0.008		±0.01																
		-0.016																		
20	32	30	60	17	60	47	22 ^{±0.15}	30 ^{±0.15}	35	35	8.4	M10	6	42	15	17.5	5.0	2.5	9.5	22
25	40	35	72	21	75	59	28 ^{±0.15}	36 ^{±0.15}	42	45	10.5	M12	8	50	18	22.0	6.5	3.0	12.0	26
30	47	40	82	25	86	69	34 ^{±0.15}	42 ^{±0.15}	52	52	13.5	M16	10	55	24	27.0	8.0	30.0	12.8	30
40	62	45	100	32	110	81	43 ^{±0.15}	48 ^{±0.15}	65	60	15.5	M20	12	67	30	31.0	10.0	4.0	16.8	38
50	75	50	115	38	127	101	50 ^{±0.15}	62 ^{±0.15}	75	75	17.5	M20	12	78	30	39.0	12.0	5.0	22.1	45


Shaft	Angle	Radial clearance	Load ratings ²⁾ (N)									
Ød	α	(μm)	Super linear	bushing								
				Ō		<u>S1</u>						
(mm)	(°)		dyn. C	stat. C ₀	dyn. C	stat. C ₀						
20	54	p g	2,520	1,880	3,530	2,530						
25	55	clamped aft mit) to zero se	4,430	3,360	6,190	4,530						
30	60	ss clar shaft r limit) et to z ince	6,300	5,230	8,800	7,180						
40	60		9,680	7,600	13,500	10,400						
50	52	Comes to h5 s (lower and se clearar	16,000	12,200	22,300	16,800						

1) Clamped (fastened) in relation to \mathcal{O} d.

2) The load ratings apply for the main load direction.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

A Refer to the diagrams on page 78 and page 79 for load in the direction of opening.

Standard linear bushings

Product overview

The benefits

- Rugged all-metal design with steel ball retainer for harsh environments with heavy contamination
- For use in woodworking, foundries, cement plants
- Also available in stainless steel for medical, chemistry and food industries
- Multiple pockets act as lubricant reservoirs for extended lubrication intervals or lubrication for life.
- Pockets also collect any dirt that may have worked its way in to prevent the linear bushing from jamming.
- Seal-free and with steel ball retainers for temperatures well above 80 °C or under vacuum
- Various flanged versions
- Optional integrated wiper seals
- Linear sets with cast iron/steel/aluminum housing

R0740 page 114 Flanged

Central flanged

Explanation of short product name

Sample linear bushing:

Tandem

Standard linear bushing KBM-FT-20-DD-NR

Definition of codes		KB	MF	r 20	DD	NR				
Туре	Linear bushing	= KB					NR	=	Stainless steel	Version
Series	Standard (metal)	= M						=	Normal	
Form	Closed	=					VD	=	Fully sealed	Seals
	Open	= O					DD	=	With two seals	
	Adjustable	= E					D	=	1 seal	
	Flanged	= F						=	No seals	
	Tandem	= T								
	Central flanged	= M								
Shaft diameter		= 20		_						

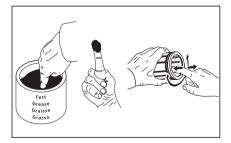
Sample linear set:

Linear set with standard linear bushing LSA-OE-M-20-DD

Definition of codes				LS	Α	0	EN	1 20	VD				
Туре	Linear set	=	LS										
Material (housing)	Aluminum	=	А										
	Cast iron	=	G										
	Steel	=	S										
Form	Closed	=											
	Open	=	0							VD	=	Fully sealed	Seals
	Side opening	=	S								=	No seals	
	Adjustable	=	Е							20	=		Shaft diameter
	Flanged	=	F							М	=	Standard (metal)	Series

Standard linear bushings

Technical data


Please observe general technical principles and follow the lubricating and installation instructions.

Installation dimensions/ interchangeability	They are ir	inear bushings have nterchangeable, how d lubrication.			
Seal	Open star	linear bushings cor ndard linear bushing ith linear seal; incre	gs with shaft diame		ers of 5 and higher. also come fully
Friction	when lubr The friction value under The table	n coefficients µ of t icated with oil. n coefficient is lowes er low loads. shows the friction g n not under radial lo	st under high load. It generated by stand	can also be greater ard linear bushings	r than the indicated with seals on both
	Shaft	Closed and adjusta	ble	Open	
	Ød	Breakaway force	Friction	Breakaway force	Friction
	(mm)	Reference value (N)	Reference value (N)	Reference value (N)	Reference value (N)
	5	0.8	0.4	-	-
	8	1.0	0.5	-	-
	10	2.0	1.0	-	-
	12	6.0	2.0	8	3
	16	9.0	3.0	12	4
	20	12.0	4.0	16	6
	25	14.0	5.0	19	7
	30	18.0	6.0	24	8
	40	24.0	8.0	32	11
	50	30.0	10.0	40	14
	60	36.0	12.0	48	16
	80	45.0	15.0	60	20

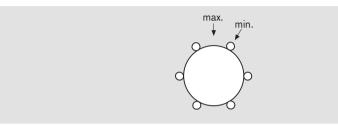
Speed and acceleration	Ø d (mm)	v _{max} (m/s)	a _{max} (m/s²)
	≤ 40	2.5	100
	≥ 50	2.0	50

Initial lubrication

Standard linear bushings do not have an initial lubrication. Grease linear bushings before use, see "Initial lubrication" section "Lubrication" on page 21. Service life data is based on initial lubrication and relubricated linear bushings.

Operating temperatures

-10 °C to 80 °C

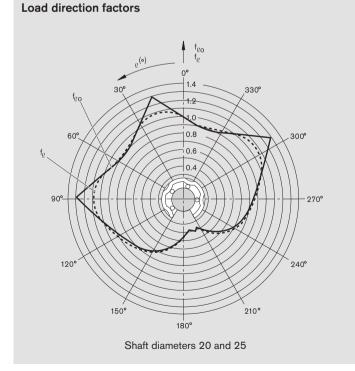

Only unsealed linear bushings with steel ball retainers may be used at higher temperatures. Note reductions in load rating (see "Life expectancy calculation" on page 16).

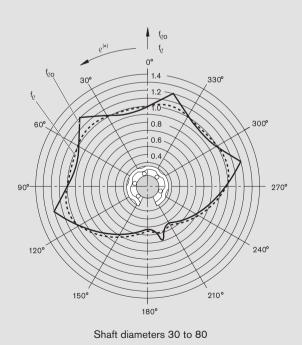
Impact of load direction on load rating of closed and adjustable maximum standard linear bushings If the load

Depending on installation, the listed load ratings should be chosen at the minimum or maximum position and should be based on the calculations.

If the load direction is clearly defined and the standard linear bushings can be installed at the maximum position, the load ratings C_{max} (dynamic load rating) and C_{0max} (static load rating) can be used.

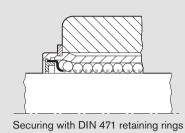
If directed installation is not possible or the load direction is not defined, the minimum load ratings must be used.

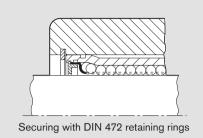



Impact of load direction on load rating of open standard linear bushings

The load ratings C and C₀ apply for the main load direction $\rho = 0^{\circ}$. For all other load directions, the load ratings must be multiplied by the factors f_{ρ} (dynamic load rating) or $f_{\rho 0}$ (static load rating C₀).

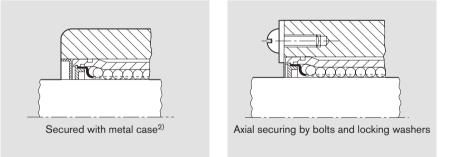
Installing specific standard linear bushings can prevent a reduction in load rating (see linear set with side opening).


Standard linear bushings


Customer-built housings

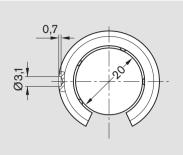
Securing

Standard linear bushings, closed, adjustable


- Retaining rings
- Metal case
- Special design

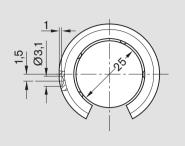
Shaft	DIN 471 retaining rings		DIN 472 retaining r	ings
Ød	Material number	Dimensions	Material number	
(mm)		(mm)		(mm)
5	R3410 712 00	12x1	R3410 207 00	12x1
8	R3410 713 00	16x1	R3410 208 00	16x1
10	R3410 763 00	19x1.2	R3410 221 00	19x1
12	R3410 714 00	22x1.2	R3410 209 00	22x1
16	R3410 715 00	27x1.2 ¹⁾	R3410 210 00	26x1.2
20	R3410 716 00	33x1.5 ¹⁾	R3410 211 00	32x1.2
25	R3410 717 00	42x1.75	R3410 212 00	40x1.75
30	R3410 718 00	48x1.75	R3410 213 00	47x1.75
40	R3410 719 00	62x2	R3410 214 00	62x2
50	R3410 720 00	75x2.5	R3410 215 00	75x2.5
60	R3410 721 00	90x3	R3410 216 00	90x3
80	R3410 722 00	120x4	R3410 217 00	120x4

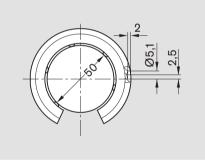
1) Not in accordance with DIN 471.

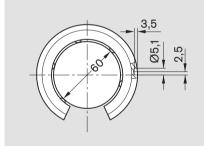


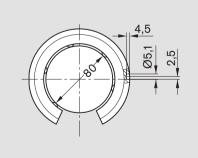
2) See customer-built housings of super linear bushings 2 and 2 for material numbers and dimensions.

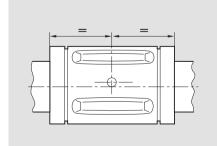
Standard linear bushings, open

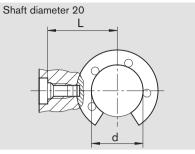

- Locating hole dimensions

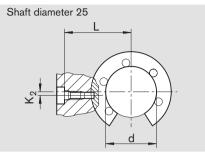

Open standard linear bushings come with a locating hole. It allows for axial and radial securing.



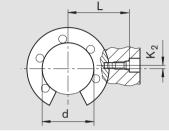

3

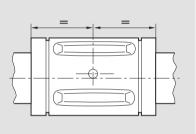

<u>1,7</u> Q3'1 Ø3

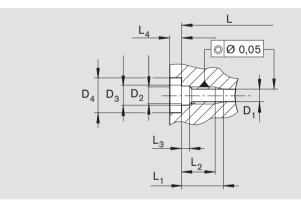

Standard linear bushings


Customer-built housings

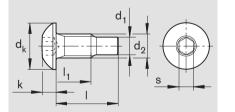
- Secured with locating screw

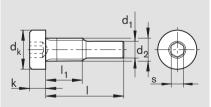

Note on installation:


- Open standard linear bushings come with the necessary locating hole.
- During installation, the locating hole in the linear bushing is aligned with the pin hole in the housing. The locating screw is then screwed in and tightened to the specified torque.



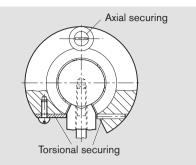
Shaft diameters 30, 40, 50, 60, 80




Locating screws

Locating screws are self-locking.

Shaft diameter 20



Shaft diameters 25, 30, 40, 50, 60, 80

Dimer	nsions (mm) Locating															Locating screv	v	Weight		
Shaft	м															Material	Tightening			
Ød	L	K ₂	L ₁	L ₂	L ₃	L_4	D ₁	D_2	D ₃	D ₄	d ₂	d _k	d ₁	I	I_1	k	s	number	torque	
				min.	+0.2	min.	+0.1		H13	H13									(Nm)	(g)
20	25.50 _{-0.10}	-	8.5+0.2	6.5	1.3	2.5	3.1	M4	4.5	8	M4	7.6	З	10.15	5.7	2.2	2.5	R3429 009 01	1.9	1.4
25	33.05 _{-0.10}	1.5	10.0 ^{+0.2}	8.0	2.0	3.2	3.1	M4	4.5	8	M4	7.0	З	14.10	6.5	2.8	2.5	R3427 009 09	1.9	1.8
30	36.00 _{-0.15}	2.0	10.0+0.2	8.0	2.0	3.2	3.1	M4	4.5	8	M4	7.0	3	14.10	6.5	2.8	2.5	R3427 009 09	1.9	1.8
40	42.90 _{-0.15}	1.5	10.0+0.2	8.0	2.0	3.2	3.1	M4	4.5	8	M4	7.0	З	14.10	6.5	2.8	2.5	R3427 009 09	1.9	1.8
50	58.50 _{-0.20}	2.5	17.5 ^{+0.5}	13.5	3.7	6.0	5.1	M8	9.0	15	M8	13.0	5	22.80	12.5	5.0	5.0	R3427 005 09	16.0	11.1
60	71.50_0.25	2.5	17.5+0.5	13.5	3.7	6.0	5.1	M8	9.0	15	M8	13.0	5	29.70	12.5	5.0	5.0	R3427 006 09	16.0	12.2
80	85.50 _{-0.25}	2.5	17.5+0.5	13.5	3.7	6.0	5.1	M8	9.0	15	M8	13.0	5	29.70	12.5	5.0	5.0	R3427 006 09	16.0	12.2

 Axial securing by bolts and locking washers, as well as torsional securing with pin or washers.

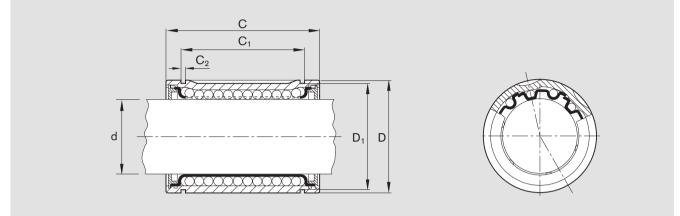
Standard linear bushings, R0600 closed, no wiper seals

Standard linear bushings, R0602 closed, with wiper seals

Design

- Hardened and machined outer sleeve
- Steel ball retainer (shaft diameters 3 to 10 with plastic ball retainer made of POM¹) or PA²)
- Balls made of rolling bearing steel
- No wiper seals, come with integrated steel retaining rings; higher temperatures allowed with shaft diameters 12 and higher
- Integrated wiper seals for high contamination
- Closed, for self-supporting shafts

Shaft	Material number		Weight
Ød	No wiper seal	With two wiper seals	
(mm)	KBM	KBMDD	(kg)
3 ¹⁾	R0600 303 00	-	0.001
4 ¹⁾	R0600 304 00	-	0.002
5 ²⁾	R0600 305 00	R0602 305 10	0.010
8 ²⁾	R0600 308 00	R0602 308 10	0.020
10 ¹⁾	R0600 310 00	R0602 310 10	0.030
12	R0600 012 00	R0602 012 10	0.040
16	R0600 016 00	R0602 016 10	0.050
20	R0600 020 00	R0602 020 10	0.100
25	R0600 025 00	R0602 025 10	0.190
30	R0600 030 00	R0602 030 10	0.320
40	R0600 040 00	R0602 040 10	0.620
50	R0600 050 00	R0602 050 10	1.140
60	R0600 060 00	R0602 060 10	2.110
80	R0600 080 00	R0602 080 10	4.700


With 1 wiper seal: R0601 ... 10.

Explanation of sample short product name

KB	M	12	DD
Linear bushing	Standard (metal)	Ø 12	With two seals

See page 96 for more information on short product names.

Dimensions

Dimens	sions (m	m)				Rows of	Working	Radial clearance ¹⁾	Load rating	gs (N)		
						balls	bore diame-	h6 shaft		dyn. C		stat. C ₀
Ød	D	С	C ₁	C ₂	D ₁		ter tolerance		min.	max.	min.	max.
		h12	H13				(μm)	(μm)				
3	7	10	-	-	-	4	+8	+12	55	65	45	65
							0	+2				
4	8	12	-	-	-	4	+8	+14	70	80	60	85
							0	+2				
5	12	22	14.2	1.1	11.1	4	+11	+16	180	210	140	200
							+1	+4				
8	16	25	16.2	1.1	14.7	4	+12	+18	320	370	240	330
							+2	+5				(
10	19	29	21.6	1.3	18.0	4	+8	+18	300	350	260	370
							0	+5				
12	22	32	22.6	1.3	20.5	4	+12	+20	420	480	280	400
							+2	+5				
16	26	36	24.6	1.3	24.9	4	+14	+22	580	670	440	620
							+2	+5				
20	32	45	31.2	1.6	30.5	5	+14	+23	1,170	1,390	860	1,250
							+2	+6				
25	40	58	43.7	1.85	38.5	5	+16	+25	2,080	2,480	1,560	2,280
							+2	+6				
30	47	68	51.7	1.85	44.5	6	+16	+25	2,820	2,980	2,230	2,860
							+2	+6				
40	62	80	60.3	2.15	58.0	6	+19	+30	5,170	5,480	3,810	4,880
						-	+2	+7				
50	75	100	77.3	2.65	71.0	6	+19	+30	8,260	8,740	6,470	8,280
						-	+2	+7				
60	90	125	101.3	3.15	85.0	6	+19	+33	11,500	12,100	9,160	11,730
							+2	+7				
80	120	165	133.3	4.15	114.0	6	+24	+37	21,000	22,200	16,300	20,850
							+2	+8				

1) Determined from working bore diameter and shaft tolerance statistics. Recommended housing bore tolerance: H6 or H7.

The dynamic load ratings are based on a total travel of 100,000 m.

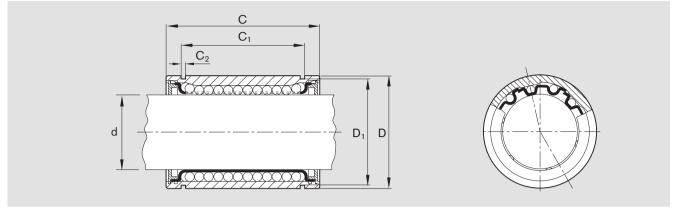
When based on 50,000 m, the C values in the table are multiplied by 1.26.

Standard linear bushings, R0600 Closed, no wiper seal stainless

Standard linear bushings, R0602 Closed, with wiper seals stainless

Design

- Hardened and machined outer sleeve made of stainless steel comparable to 1.4125
- Ball retainer made of stainless steel comparable to 1.4301
- Balls made of stainless steel comparable to 1.4125
- Integrated retaining rings made of stainless steel comparable to 1.4006 or wiper seals
- Closed, for self-supporting shafts


Shaft	Material number	Weight	
Ød	No wiper seal	With two wiper seals	
(mm)	KBMNR	KBMDD-NR	(kg)
3	R0600 003 30	-	0.001
4	R0600 004 30	-	0.002
5	R0600 005 30	R0602 005 30	0.011
8	R0600 008 30	R0602 008 30	0.022
10	R0600 010 30	R0602 010 30	0.036
12	R0600 012 30	R0602 012 30	0.045
16	R0600 016 30	R0602 016 30	0.060
20	R0600 020 30	R0602 020 30	0.100
25	R0600 025 30	R0602 025 30	0.235
30	R0600 030 30	R0602 030 30	0.360
40	R0600 040 30	R0602 040 30	0.770

Explanation of sample short product name

KB	М	12	DD	NR	
Linear bushing	Standard (metal)	Ø 12	With two seals	Stainless steel	

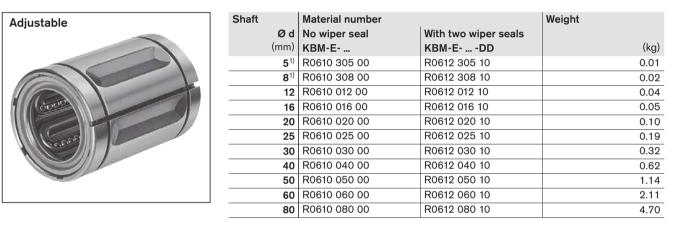
See page 96 for more information on short product names.

Dimensions

Dimensions (mm)						Rows of Working bore Radial clear- Load ratings (N)						
					ance ¹⁾ h6 shaft	dyn. C			stat. C ₀			
Ød	D	С	C ₁	C ₂	D ₁		tolerance		min.	max.	min.	max.
		h12	H13				(μm)	(μm)				
3	7	10	-	-	-	4	+8	+12	55	65	45	65
							0	+2				
4	8	12	-	-	-	4	+8	+14	70	80	60	85
							0	+2				
5	12	22	14.2	1.10	11.5	4	+11	+16	160	185	180	250
							+1	+4				
8	16	25	16.2	1.10	15.2	4	+12	+18	210	240	235	330
							+2	+5				
10	19	29	21.6	1.30	18.0	4	+8	+18	300	350	260	370
							0	+5				
12	22	32	22.6	1.30	21.0	4	+12	+20	400	460	420	600
							+2	+5				
16	26	36	24.6	1.30	24.9	4	+14	+22	460	530	440	630
							+2	+5				
20	32	45	31.2	1.60	30.3	5	+14	+23	680	800	860	1,250
							+2	+6				
25	40	58	43.7	1.85	37.5	6	+16	+25	780	830	1,620	2,100
							+2	+6				
30	47	68	51.7	1.85	44.5	6	+16	+25	1,250	1,320	2,000	2,500
							+2	+6				
40	62	80	60.3	2.15	59.0	6	+19	+30	1,720	1,820	3,300	4,200
							+2	+7				

1) Determined from working bore diameter and shaft tolerance statistics. Recommended housing bore tolerance: H6 or H7.

The dynamic load ratings are based on a total travel of 100,000 m.

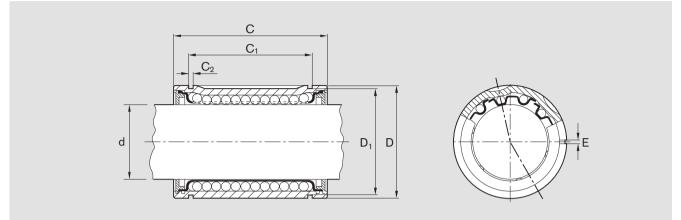

When based on 50,000 m, the C values in the table are multiplied by 1.26.

Standard linear bushings, R0610 adjustable, no wiper seals

Standard linear bushings, R0612 adjustable, with wiper seals

Design

- Hardened and machined outer sleeve
- Steel ball retainer (shaft diameters 5 and 8 with plastic retainer made of PA¹)
- Balls made of rolling bearing steel
- No wiper seals, come with integrated steel retaining rings; higher temperatures allowed with shaft diameters 12 and higher
- Integrated wiper seals for high contamination
- Radial clearance adjustable



With 1 wiper seal: R0611 ... 10.

Explanation of sample short product name

KB	М	E	12	DD
Linear bushing	Standard (metal)	Adjustable	Ø 12	With two seals

See page 96 for more information on short product names.

Dimen	sions (mm)					Rows of	Load ratings	(N)			Radial clear	ance (μm)
Ød	D	С	C ₁	C ₂	D ₁	E	balls		dyn. C		stat. C ₀	Shaft/bore	
		h12	H13					min.	max.	min.	max.	h6/H7	h6/K7
5	12	22	14.2	1.10	11.1	1.5	4	180	210	140	200	+34	+22
												+11	-1
8	16	25	16.2	1.10	14.7	1.5	4	320	370	240	330	+36	+24
												+13	+1
12	22	32	22.6	1.30	20.5	1.5	4	420	480	280	400	+41	+26
												+14	-1
16	26	36	24.6	1.30	24.9	1.5	4	580	670	440	620	+43	+28
												+14	-1
20	32	45	31.2	1.60	30.5	2.0	5	1,170	1,390	860	1,250	+49	+31
												+16	-2
25	40	58	43.7	1.85	38.5	2.0	5	2,080	2,480	1,560	2,280	+50	+32
												+17	-1
30	47	68	51.7	1.85	44.5	2.0	6	2,820	2,980	2,230	2,860	+50	+32
												+17	-1
40	62	80	60.3	2.15	58.0	2.0	6	5,170	5,480	3,810	4,880	+60	+39
												+20	-1
50	75	100	77.3	2.65	71.0	2.0	6	8,260	8,740	6,470	8,280	+60	+39
												+20	-1
60	90	125	101.3	3.15	85.0	2.0	6	11,500	12,100	9,160	11,730	+68	+43
												+22	-3
80	120	165	133.3	4.15	114.0	2.0	6	21,000	22,200	16,300	20,850	+71	+46
												+24	-1

The dynamic load ratings are based on a total travel of 100,000 m.

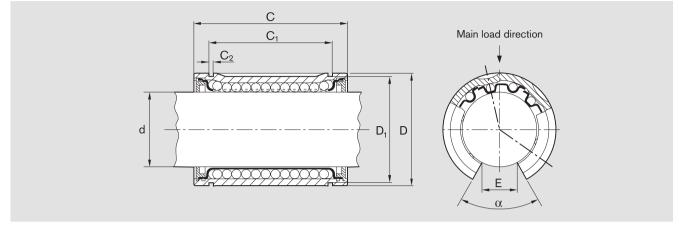
When based on 50,000 m, the C values in the table are multiplied by 1.26.

Standard linear bushings, R0630 Open, no wiper seals

Standard linear bushings, R0632 Open, with wiper seals

Design

- Hardened and machined outer sleeve
- Steel ball retainer
- Balls made of rolling bearing steel
- No wiper seals, come with integrated steel retaining rings; higher temperatures allowed with shaft diameters 12 and higher
- Integrated wiper seals for high contamination
- With locating hole for axial and radial securing (no locating hole for shaft diameters 12 and 16)


Shaft	Material number			Weight
	No wiper seal	2	Fully	
Ød		wiper seals	sealed	
(mm)	КВМ-О	KBM-ODD	KBM-OVD	(kg)
12 ¹⁾	R0630 012 00	R0632 012 00	-	0.03
16 ¹⁾	R0630 016 00	R0632 016 00	-	0.04
20	R0630 020 00	R0632 020 00	R0632 020 05	0.08
25	R0630 025 00	R0632 025 00	R0632 025 05	0.15
30	R0630 030 00	R0632 030 00	R0632 030 05	0.26
40	R0630 040 00	R0632 040 00	R0632 040 05	0.52
50	R0630 050 00	R0632 050 00	R0632 050 05	0.95
60	R0630 060 00	R0632 060 00	R0632 060 05	1.76
80	R0630 080 00	R0632 080 00	R0632 080 05	3.92

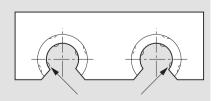
1) No locating hole for radial and axial securing.

With 1 wiper seal: R0631 0.. 00.

Explanation of sample short product name

KB	М	0	12	DD
Linear bushing	Standard (metal)	Open	Ø 12	With two seals

Dimens						Angle	Rows of	Load ratings ²⁾	(N)	Radial clearar	ice (μm)	
Ød	D	С	C ₁	C_2	D ₁	E ¹⁾	α	balls	dyn. C	stat. C ₀	Shaft/bore	
		h12	H13				(°)				h6/H7	h6/K7
12	22	32	22.6	1.30	20.5	7.5	78	3	430	290	+41	+26
											+14	-1
16	26	36	24.6	1.30	24.9	10.0	78	3	600	450	+43	+28
											+14	-1
20	32	45	31.2	1.60	30.5	10.0	60	4	1,280	970	+49	+31
											+16	-2
25	40	58	43.7	1.85	38.5	12.5	60	4	2,270	1,750	+50	+32
											+17	-1
30	47	68	51.7	1.85	44.5	12.5	50	5	2,890	2,390	+50	+32
											+17	-1
40	62	80	60.3	2.15	58.0	16.8	50	5	5,280	4,000	+60	+39
											+20	-1
50	75	100	77.3	2.65	71.0	21.0	50	5	8,470	6,900	+60	+39
											+20	-1
60	90	125	101.3	3.15	85.0	27.2	54	5	11,800	9,780	+68	+43
											+22	-3
80	120	165	133.3	4.15	114.0	36.3	54	5	21,500	17,400	+71	+46
											+24	-1


1) Minimum size in relation to \emptyset d.

2) The load ratings C and C_0 apply for the main load direction.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

\triangle Refer to the diagrams on page 99 for load in the direction of opening.

Shaft diameters 12 and 16 must be installed as shown (inversely) in order to avoid lifting off the shaft. It is not possible to set a single linear bushing (slotted housing with adjusting screw) to zero clearance.

Standard linear bushings

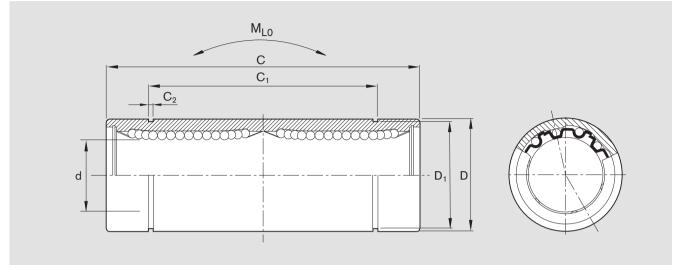
Standard linear bushings, R0650 Tandem, with wiper seals Normal

Design

- Hardened and machined outer sleeve
- POM ball retainer
- Balls made of rolling bearing steel
- Integrated wiper seals

Standard linear bushings, R0650 Tandem, with wiper seals Stainless

Design


- Hardened and machined outer sleeve made of stainless steel comparable to 1.4125
- Ball retainer made of stainless steel comparable to 1.4301
- Balls made of stainless steel comparable to 1.4125 Retaining rings for ball retainer made of stainless steel comparable to 1.4006
- Integrated wiper seals

Shaft	Material number		Weight
Ød	Normal	Stainless	
(mm)	KBMTDD	KBMTDD-NR	(kg)
8	R0650 508 00	R0650 208 30	0.04
12	R0650 512 00	R0650 212 30	0.08
16	R0650 516 00	R0650 216 30	0.12
20	R0650 520 00	R0650 220 30	0.18
25	R0650 525 00	R0650 225 30	0.43
30	R0650 530 00	R0650 230 30	0.62
40	R0650 540 00	R0650 240 30	1.40

Explanation of sample short product name

KB	М	Т	12	DD	NR
Linear bushing	Standard (metal)	Tandem	Ø 12	With two seals	Stainless steel

Dime	nsion	s (mm)				Rows	Working	Radial	Load rati	ngs (N)			Linear torque	
						of balls	bore	clearance ¹⁾		dyn. C		stat. C ₀	M _{LO}	
Ød	D	С	C ₁	C ₂	D ₁		diameter	h6 shaft	min.	max.	min.	max.		
							tolerance							
							(μm)	(μm)					(Nm)	
8	16	46 _{-0.3}	33.0 _{-0.3}	1.10	15.2	4	+9	+15	340	390	470	660	4.5	
							-1	+2						
12	22	61 _{-0.3}	45.8 _{-0.3}	1.30	21.0	4	+9	+17	650	750	840	1,200	11.0	
							-1	+2					(
16	26	68 _{-0.3}	49.8 _{-0.3}	1.30	24.9	4	+11	+19	750	860	880	1,260	13.0	
							-1	+2						
20	32	80 _{-0.3}	61.0 _{-0.3}	1.60	30.5	5	+11	+20	1,100	1,300	1,720	2,500	26.0	
							-1	+3						
25	40	$112_{-0.4}$	82.0 _{-0.4}	1.85	38.0	6	+13	+22	1,250	1,350	3,240	4,200	61.0	
							-2	+2						
30	47	$123_{-0.4}$	104.2 _{-0.4}	1.85	44.5	6	+13	+22	2,000	2,150	4,000	5,000	82.0	
							-2	+2						
40	62	$151_{-0.4}$	121.2 _{-0.4}	2.15	59.0	6	+16	+27	2,800	3,000	6,600	8,400	165.0	
							-4	+1						

1) Determined from working bore diameter and shaft tolerance statistics. Recommended housing bore tolerance: H6 or H7.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Standard linear bushings

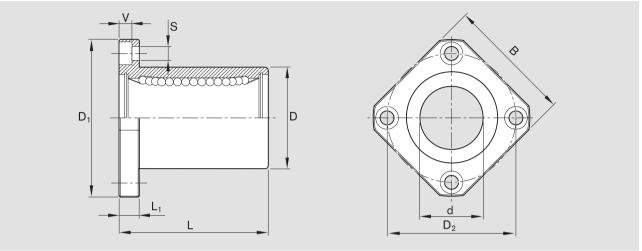
Standard linear bushings, R0740 Flanged Normal

Design

- Hardened and machined outer sleeve
- POM ball retainer
- Balls made of rolling bearing steel
- Integrated wiper seals

Standard linear bushings, R0740 Flanged Stainless

Design


- Hardened and machined outer sleeve made of stainless steel comparable to 1.4125
- Ball retainer made of stainless steel comparable to 1.4301, made of POM for shaft diameter 5
- Balls made of stainless steel comparable to 1.4125
- Flange and retaining rings for ball retainer made of stainless steel comparable to 1.4006
- Integrated wiper seals

Shaft	Material number		Weight
Ød	Normal	Stainless	
(mm)	KBMFDD	KBMFDD-NR	(kg)
5	R0740 505 00	R0740 505 30	0.020
8	R0740 508 00	R0740 208 30	0.033
12	R0740 512 00	R0740 212 30	0.064
16	R0740 516 00	R0740 216 30	0.090
20	R0740 520 00	R0740 220 30	0.150
25	R0740 525 00	R0740 225 30	0.300
30	R0740 530 00	R0740 230 30	0.470
40	R0740 540 00	R0740 240 30	0.980

Explanation of sample short product name

KB	Μ	F	12	DD	NR
Linear bushing	Standard (metal)	Flanged	Ø 12	With two seals	Stainless steel

Dimer	nsions (mn	n)							Rows	Working	Radial	Load ratin	gs (N)		
Ød	D	D ₁	D_2	В	L	L ₁	V	S	of balls	bore	clearance ¹⁾		dyn. C		stat. C ₀
										diameter	h6 shaft				
										tolerance					
					±0.3					(μm)	(μm)	min.	max.	min.	max.
5	12_0.013	28	20	22	22	5	3.1	3.5	4	+8	+14	160	185	180	250
										+0	+2				
8	16 _{-0.013}	32	24	25	25	5	3.1	3.5	4	+8	+15	210	240	235	330
										+0	+2				
12	22 _{-0.016}	42	32	32	32	6	4.1	4.5	4	+8	+16	400	460	420	600
										+0	+3				
16	26 _{-0.016}	46	36	35	36	6	4.1	4.5	4	+9	+17	460	530	440	630
										-1	+2				
20	32_0.019	54	43	42	45	8	5.1	5.5	5	+9	+19	680	800	860	1,250
										-1	+2				
25	40_0.019	62	51	50	58	8	5.1	5.5	6	+11	+20	780	830	1,620	2,100
										-1	+3				
30	47_0.019	76	62	60	68	10	6.1	6.6	6	+11	+20	1,250	1,320	2,000	2,500
										-1	+3				
40	62_0.022	98	80	75	80	13	8.1	9.0	6	+13	+24	1,720	1,820	3,300	4,200
										-2	+3				

1) Determined from working bore diameter and shaft tolerance statistics. Recommended housing bore tolerance: H6 or H7.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Standard linear bushings

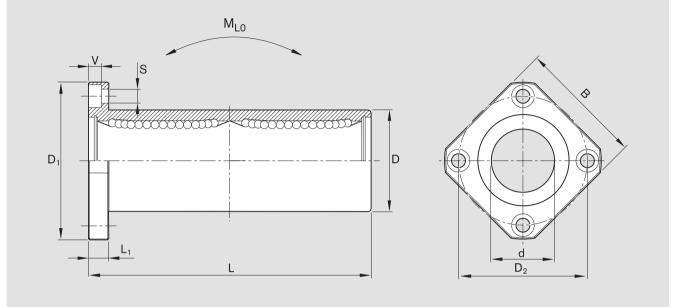
Standard linear bushings, R0741 Flanged tandem Normal

Design

- Hardened and machined outer sleeve
- POM ball retainer
- Balls made of rolling bearing steel
- Integrated wiper seals

Standard linear bushings, R0741 Flanged tandem Stainless

Design


- Hardened and machined outer sleeve made of stainless steel comparable to 1.4125
- Ball retainer made of stainless steel comparable to 1.4301, made of POM for shaft diameter 5
- Balls made of stainless steel comparable to 1.4125
- Retaining rings for ball retainer made of stainless steel comparable to 1.4006
- Flange made of stainless steel comparable to 1.4006
- Integrated wiper seals

Shaft	Material number		Weight
Ød	Normal	Stainless	
(mm)	KBMFTDD	KBMFTDD-NR	(kg)
8	R0741 508 00	R0741 208 30	0.05
12	R0741 512 00	R0741 212 30	0.09
16	R0741 516 00	R0741 216 30	0.14
20	R0741 520 00	R0741 220 30	0.23
25	R0741 525 00	R0741 225 30	0.50
30	R0741 530 00	R0741 230 30	0.72
40	R0741 540 00	R0741 240 30	1.60

Explanation of sample short product name

KB	М	FT	12	DD	NR
Linear bushing	Standard (metal)	Flanged, tandem	Ø 12	With two seals	Stainless steel

Dim	ensions (r	mm)							Rows	Working	Radial	Load rat	tings (N)			Linear torque	
Ød	D	D ₁	D ₂	В	L	L ₁	V	S	of balls	bore diameter tolerance	clearance ¹⁾ h6 shaft		dyn. C		stat. C ₀	M _{LO} (Nm)	
					±0.3					(μm)	(μm)	min.	max.	min.	max.		
8	16 _{-0.013}	32	24	25	46	5	3.1	3.5	4	+9	+15	340	390	470	660	4.5	
										-1	+2						
12	22_0.016	42	32	32	61	6	4.1	4.5	4	+9	+17	650	750	840	1,200	11	
										-1	+2						
16	26_0.016	46	36	35	68	6	4.1	4.5	4	+11	+19	750	860	880	1,260	13	
										-1	+2						
20	32_0.019	54	43	42	80	8	5.1	5.5	5	+11	+20	1,100	1,300	1,720	2,500	26	
										-1	+3						
25	40_0.019	62	51	50	112	8	5.1	5.5	6	+13	+22	1,250	1,350	3,240	4,200	61	
										-2	+2						
30	47_0.019	76	62	60	123	10	6.1	6.6	6	+13	+22	2,000	2,150	4,000	5,000	82	
										-2	+2						
40	62_0.022	98	80	75	151	13	8.1	9.0	6	+16	+27	2,800	3,000	6,600	8,400	165	
										-4	+1						-

1) Determined from working bore diameter and shaft tolerance statistics. Recommended housing bore tolerance: H6 or H7.

The dynamic load ratings are based on a total travel of 100,000 m.

When based on 50,000 m, the C values in the table are multiplied by 1.26.

Standard linear bushings

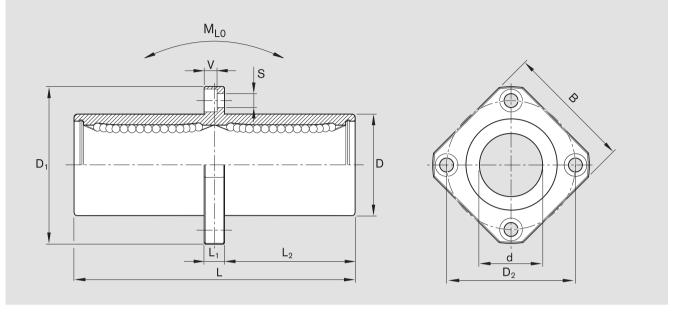
Standard linear bushings, R0742 Center flanged Normal

Design

- Hardened and machined outer sleeve
- POM ball retainer
- Balls made of rolling bearing steel
- Integrated wiper seals

Standard linear bushings, R0742 Center flanged Stainless

Design


- Hardened and machined outer sleeve made of stainless steel comparable to 1.4125
- Ball retainer made of stainless steel comparable to 1.4301
- Balls made of stainless steel comparable to 1.4125
- Flange made of stainless steel comparable to 1.4006
- Integrated wiper seals

Shaft	Material number		Weight
Ød	Normal	Stainless	
(mm)	KBMMDD	KBMMDD-NR	(kg)
8	R0742 508 00	R0742 208 30	0.05
12	R0742 512 00	R0742 212 30	0.09
16	R0742 516 00	R0742 216 30	0.14
20	R0742 520 00	R0742 220 30	0.23
25	R0742 525 00	R0742 225 30	0.50
30	R0742 530 00	R0742 230 30	0.72
40	R0742 540 00	R0742 240 30	1.60

Explanation of sample short product name

KB	М	Μ	12	DD	NR
Linear bushing	Standard (metal)	Central flanged	Ø 12	With two seals	Stainless steel

Dimensions (mm)											Working	Radial clear-	Load ra	Load ratings (N)			Linear	
Ød	D	D ₁	D ₂	В	L	L ₁	L ₂	V	S	of balls	bore diameter	ance ¹⁾ h6 shaft	dyn. C		. C stat. C ₀		torque M _{L0}	
					±0.3						tolerance (μm)	(µm)	min.	max.	min.	max.	(Nm)	
8	$16_{-0.013}$	32	24	25	46	5	20.5	3.1	3.5	4	+9	+15	340	390	470	660	4.5	OF
											-1	+2						<u>Me</u>
12	$22_{-0.016}$	42	32	32	61	6	27.5	4.1	4.5	4	+9	+17	650	750	840	1,200	11'	
											-1	+2						
16	26 _{-0.016}	46	36	35	68	6	31.0	4.1	4.5	4	+11	+19	750	860	880	1,260	13	
											-1	+2						
20	32_0.019	54	43	42	80	8	36.0	5.1	5.5	5	+11	+20	1,100	1,300	1,720	2,500	26	
											-1	+3						
25	40_0.019	62	51	50	112	8	52.0	5.1	5.5	6	+13	+22	1,250	1,350	3,240	4,200	61	
											-2	+2						
30	47 _{-0.019}	76	62	60	123	10	56.5	6.1	6.6	6	+13	+22	2,000	2,150	4,000	5,000	82	
											-2	+2						
40	62_0.022	98	80	75	151	13	69.0	8.1	9.0	6	+16	+27	2,800	3,000	6,600	8,400	165	
											-4	+1						_

1) Determined from working bore diameter and shaft tolerance statistics. Recommended housing bore tolerance: H6 or H7.

The dynamic load ratings are based on a total travel of 100,000 m.

When based on 50,000 m, the C values in the table are multiplied by 1.26.

Linear sets with standard linear bushings

Overview

	Linear sets Standard linear bushings	
	Aluminum housing	Cast iron/steel housing
Closed		R1065
Standard version with fixed working bore diameter.		
Adjustable		R1066
For zero-clearance or preloaded guides.		
Open		R1067
For long guides requiring shaft support and high rigidity.		
Open, adjustable		R1068
For zero-clearance or preloaded guides.		
Side opening	R1071	
Load exerted on the direction of opening of open linear bush- ings results in a reduction in load rating. In order to prevent this and facilitate the installation of specific linear bushings, the linear sets with side opening were developed.		
Side opening, adjustable	R1072	
For zero-clearance or preloaded guides.		
Flanged		R1081
This modular unit complements the linear set series and is used for designs with a vertical shaft.		

Benefits, technical data, installation

Benefits	 Thanks to its material and wall thickness, precision housings offer extreme rigidity regardless of load direction, even under full load. The housings can be aligned with ease during assembly to prevent distortive stress on the linear bushing. This high precision guarantees the functional reliability of our linear bushings and allows these units to be fully interchangeable with each other. Since the housings are manufactured in large quantities, the user saves significant costs over in-house designs while maintaining quality. 						
Technical data Operating temperatures	-10 °C to 80 °C. Higher temperatures allowed in size 12 and higher without wiper seals, see "Temperaturfaktor" on page 16.						
Installation Radial clearance	The radial clearance values shown in the table have been determined from statistics and correspond to values expected in practice. The R1066, R1068 and R1072 linear sets come clamped to an h5 shaft (lower limit) and set to zero clearance.						
Vertical dimension	The tolerance values for the vertical dimension "H" for the linear sets shown in the table have been determined from statistics and correspond to values expected in practice.						
Bolts	We recommend bolts in accordance with ISO 4762-8.8 for fastening the linear sets.						
Initial lubrication	Linear sets with standard linear bushings do not have an initial lubrication. Grease linear bushings before use, see "Initial lubrication" Section "Lubrication" on page 21. Service life data is based on initial lubri- cation and relubricated linear bushings.						

Linear sets with standard linear bushings

Linear sets, R1065 Closed

Linear sets, R1066 Adjustable

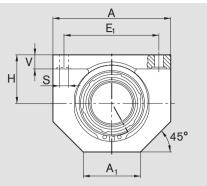
Design

- Precision housing (cast iron/steel)
- Standard linear bushing with wiper seals
- Two retaining rings

Shaft Ø d	Material number With two wiper seals	Weight
	LSG-MDD	(kg)
8	R1065 208 00	0.09
12	R1065 212 00	0.16
16	R1065 216 00	0.27
20	R1065 220 00	0.45
25	R1065 225 00	0.89
30	R1065 230 00	1.33
40	R1065 240 00	2.51
50	R1065 250 00	3.68
60	R1065 260 00	6.73
80	R1065 280 00	15.32

R1065 1 ... 00 for higher temperatures (standard linear bushing without wiper seals)

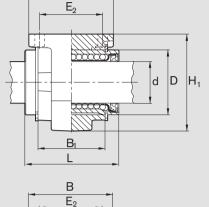
Shaft	Material number	Weight
Ød	With two wiper seals	
(mm)	LSGE-MDD	(kg)
8	R1066 208 00	0.09
12	R1066 212 00	0.16
16	R1066 216 00	0.27
20	R1066 220 00	0.45
25	R1066 225 00	0.89
30	R1066 230 00	1.33
40	R1066 240 00	2.51
50	R1066 250 00	3.68
60	R1066 260 00	6.73
80	R1066 280 00	15.32

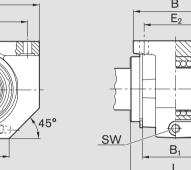

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Explanation of sample short product name

LS	G	E	М	20	DD		
Linear set	Cast iron	Adjustable	Standard linear bushing	Ø 20	With two seals		

Adjustable


Closed


A

E₁

9

В

	▲	
		1
SW		

Dime													Radial clearance ²⁾ (µm)		Tolerance for dimen-	Load ratings ⁴⁾ (N)		
														R1065	R1066	sion H ³⁾	dyn. C	stat. C ₀
Ød	D	Н	H ₁ ¹⁾	L	A ¹⁾	A ₁ ¹⁾	B ¹⁾	B ₁	E ₁	E ₂	S	V ¹⁾	SW	h6 shaft		(μm)		
8	16	15	28	25	32	16	28	14	25 ^{±0.15}	20 ^{±0.15}	3.4	5.0	2.0	+18		+6	320	240
														+5		-17		
12	22	18	35	32	42	21	32	20	32 ^{±0.15}	23 ^{±0.15}	4.5	5.5	2.5	+20	1	+6	420	280
														+5		-17		
16	26	22	42	36	50	26	35	22	40 ^{±0.15}	26 ^{±0.15}	4.5	6.5	3.0	+22	1	+5	580	440
														+5		-18		
20	32	25	50	45	60	28	42	28	45 ^{±0.15}	$32^{\pm 0.15}$	4.5	8.0	3.0	+23	1	+5	1,170	860
														+6	Ŧ	-19		
25	40	30	60	58	74	38	54	40	60 ^{±0.15}	40 ^{±0.15}	5.5	9.0	5.0	+25	<u><u> </u></u>	+5	2,080	1,560
														+6	/er	-19		
30	47	35	70	68	84	41	60	48	68 ^{±0.20}	45 ^{±0.20}	6.6	10.0	5.0	+25	shaft (lower limit) se	+5	2,820	2,230
														+6	aft	-19		
40	62	45	90	80	108	51	78	56	86 ^{±0.20}	58 ^{±0.20}	9.0	12.0	6.0	+30	ce sh	+4	5,170	3,810
														+7	h5 rano	-21		
50	75	50	105	100	130	57	70	72	108 ^{±0.20}	50 ^{±0.20}	9.0	14.0	8.0	+30	d to	+8	8,260	6,470
														+7	ped ro t	-25		
60	90	60	125	125	160	70	92	95	$132^{\pm 0.25}$	$65^{\pm 0.25}$	11.0	15.0	10.0	+33	nes clamped to h5 sh set to zero tolerance	+8	11,500	9,160
														+7	s cl	-26		
80	120	80	170	165	200	85	122	125	170 ^{±0.50}	90 ^{±0.50}	13.5	22.0	14.0	+37	Comes and set	+7	21,000	16,300
														+8	Con and	-28		

1) ISO 8062-3 - DCTG 9 tolerance.

2) Determined from working bore diameter and shaft tolerance statistics. When factoring in the outer diameter of the linear bushings and the housing bore, an h6 shaft produces similar radial clearance values as specified in the "H6H7" column under "Radial clearance" for the R0610 standard linear bushing.

3) Clamped (fastened) in relation to Ø d.

4) The load ratings indicated are minimal values as the orientation and direction of load cannot always be clearly defined.

Linear sets with standard linear bushings

Linear sets, R1067 Open

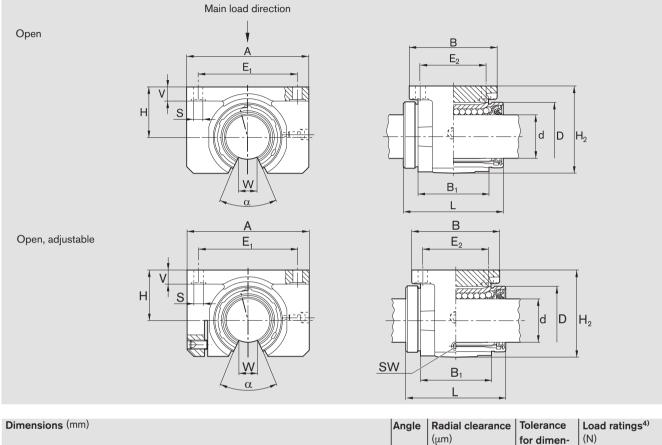
Linear sets, R1068 Open, adjustable

Design

- Precision housing (cast iron/steel)
- Secured with locating screw
- Standard linear bushing with wiper seals

Shaft	Material number	Weight
Ød	With two wiper seals	
(mm)	LSGO-MDD	(kg)
20	R1067 220 00	0.39
25	R1067 225 00	0.74
30	R1067 230 00	1.14
40	R1067 240 00	2.25
50	R1067 250 00	3.13
60	R1067 260 00	5.78
80	R1067 280 00	13.15

R1067 1.. 00 for higher temperatures (standard linear bushing without wiper seals)


Shaft Ø d	Material number With two wiper seals	Weight
	LSGOE-MDD	(kg)
20	R1068 220 00	0.38
25	R1068 225 00	0.74
30	R1068 230 00	1.12
40	R1068 240 00	2.20
50	R1068 250 00	3.11
60	R1068 260 00	5.72
80	R1068 280 00	13.09

Explanation of sample short product name

LS	G	0	М	20	DD
Linear set	Cast iron	Open	Standard linear bushing	Ø 20	With two seals

P

Dimensions

Dim												Angle	Radial clearance Tolerance			Load ratings			
															(μm)		for dimen-	(N)	
														α	R1067	R1068	sion H ³⁾	dyn. C	stat. C ₀
Ød	D	Н	H ₂ ¹⁾	L	A1)	B ¹⁾	B ₁	E ₁	E ₂	S	V1)	W ²⁾	SW	(°)	h6 shaft		(μm)		
20	32	25	42	45	60	42	28	45 ^{±0.15}	32 ^{±0.15}	4.5	8	10	2.5	60	+36	and	+5	1,280	970
															+4		-19		
25	40	30	51	58	74	54	40	60 ^{±0.15}	40 ^{±0.15}	5.5	9	12.5	3	60	+38	limit)	+5	2,270	1,750
															+4		-19		
30	47	35	60	68	84	60	48	68 ^{±0.20}	45 ^{±0.20}	6.6	10	12.5	3	50	+38	(lower	+5	2,890	2,390
															+4	shaft (-19		
40	62	45	77	80	108	78	56	86 ^{±0.20}	58 ^{±0.20}	9.0	12	16.8	4	50	+45		+4	5,280	4,000
															+5	h5 Se	-21		
50	75	50	88	100	130	70	72	108 ^{±0.20}	50 ^{±0.20}	9.0	14	21.0	5	50	+45	mped to h clearance	+8	8,470	6,900
															+5	clamped ero cleara	-25		
60	90	60	105	125	160	92	95	$132^{\pm0.25}$	$65^{\pm 0.25}$	11.0	15	27.2	6	54	+50		+8	11,800	9,780
															+5	0 N	-26		
80	120	80	140	165	200	122	125	$170^{\pm 0.50}$	90 ^{±0.25}	13.5	22	36.3	8	54	+54	to	+7	21,500	17,400
															+6	Col set	-28		

1) ISO 8062-3 - DCTG 9 tolerance.

2) Minimum size in relation to Ø d.

3) Clamped (fastened) in relation to Ø d.

4) The load ratings apply for the main load direction.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

 \triangle Refer to the diagrams on page 99 for load in the direction of opening.

Linear sets with standard linear bushings

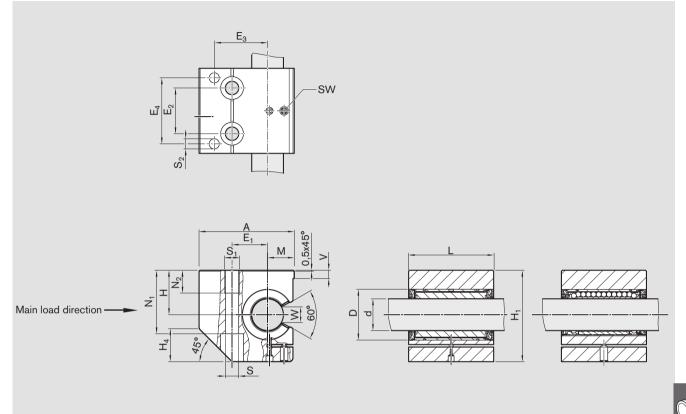
Linear sets, R1071 Side opening

Linear sets, R1072 Side opening, adjustable

Design

- Lightweight precision housing (aluminum)
- Secured by grooved taper pin
- Standard linear bushing
- Top wiper seals
- No lube port

Load exerted on the direction of opening of open linear bushings results in a considerable reduction in load rating. In order to prevent this and facilitate the installation of specific open linear bushings, the linear set with side opening was developed.


Shaft	Material number	Weight
Ød	With two wiper seals	
(mm)	LSAS-MDD	(kg)
20	R1071 220 00	0.45
25	R1071 225 00	0.85
30	R1071 230 00	1.30
40	R1071 240 00	2.30
50	R1071 250 00	3.70

Shaft	Material number	Weight
Ød	With two wiper seals	
(mm)	LSASE-MDD	(kg)
20	R1072 220 00	0.45
25	R1072 225 00	0.85
30	R1072 230 00	1.30
40	R1072 240 00	2.30
50	R1072 250 00	3.70

Explanation of sample short product name

LS	А	S	M	20	DD
Linear set	Aluminum	Side opening	Standard linear bushing	Ø 20	With two seals

Din	nens	nensions (mm)															Radial cl (μm)	earance ⁵⁾	Load ratings ⁶⁾ (N)				
															R1072	dyn. C	stat. C ₀						
Ø	D	A	E ₁	E2	E_3	E ₄	H ¹⁾	H ₁	H_4	L	M ¹⁾	N ₁	N_2	S ²⁾	S ₁	S ₂ ²⁾	SW	v	W4)	h6 shaft			
d			±0.15	±0.15							±0.01												
20	32	60	22	30	33	42	30 _{+0.005} -0.019	60	22	54	17	42	15	8.4	M10	6	2.5	5.0	10.0	+36 +4		1,280	970
25	40	75	28	36	42	52	35 _{+0.005} -0.019	72	26	67	21	50	18	10.5	M12	8	3.0	6.5	12.5	+38 +4	to z	2,270	1,750
30	47	86	34	42	48	60	40 _{+0.005} -0.019	82	30	79	25	55	24	13.5	M16	10	3.0	8.0	12.5	+38 +4	iet to	2,890	2,390
40	62	110	43	48	62	68	45 _{+0.004} -0.021	100	38	91	32	67	30	15.5	M20	12	4.0	10.0	16.8	+45 +5	s clamped limit) and s rce	5,280	4,000
50	75	127	50	62	70	85	50 _{+0.004} -0.021	115	45	113	38	78	30	17.5	M20	12	5.0	12.0	21.0	+45 +5	Comes clamped (lower limit) and s clearance	8,470	6,900

1) Clamped (fastened), in relation to Ø d.

2) ISO 4762-8.8 socket head cap bolts.

3) Pin centering.

4) Minimum size in relation to Ø d.

5) Clamped (fastened).

6) The load ratings apply for the main load direction.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

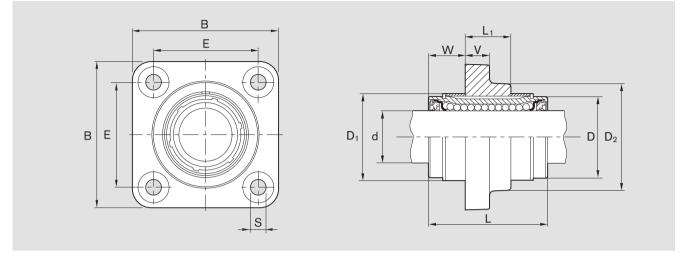
See the notes on installing linear sets with side opening.

Linear sets with standard linear bushings

Linear sets, R1081 Flanged

Design

- Flanged housing (lamellar graphite cast iron)
- Two retaining rings with additional two spacer rings (steel) for shaft diameters 12 to 40
- Standard linear bushing with wiper seals
- Radial clearance not adjustable



Shaft	Material number	Weight
Ød	With two wiper seals	
(mm)	LSGF-MDD	(kg
12	R1081 212 00	0.11
16	R1081 216 00	0.18
20	R1081 220 00	0.33
25	R1081 225 00	0.63
30	R1081 230 00	1.00
40	R1081 240 00	1.90
50	R1081 250 00	4.00
60	R1081 260 00	7.40
80	R1081 280 00	14.70

R1081 1.. 00 for higher temperatures (standard linear bushing without wiper seals)

Explanation of sample short product name

LS	G	F	М	20	DD
Linear set	Cast iron	Flanged	Standard linear bushing	Ø 20	With two seals

Dimensi	ons (m	m)									Radial clearance ²⁾	Load ratings ³	³⁾ (N)
Ød	B ¹⁾	L	L ₁	D	D ₁	D ₂ ¹⁾	E	S	V ¹⁾	М	h6 shaft	dyn. C	stat. C ₀
					+0.8			H13			(μm)		
12	42	32	12	22	24	28	30 ^{±0.12}	5.5	6	10	+20	420	280
											+5		
16	50	36	15	26	28.5	34	35 ^{±0.12}	5.5	8	10.5	+22	580	440
											+5		
20	60	45	18	32	35	42	42 ^{±0.15}	6.6	10	13.5		1,170	860
											+6		
25	74	58	23	40	43	54	54 ^{±0.15}	6.6	12	17.5		2,080	1,560
											+6		
30	84	68	26	47	49.5	62	60 ^{±0.25}	9.0	14	21	+25	2,820	2,230
											+6		
40	108	80	36	62	66.5	80	78 ^{±0.25}	11	16	22	+30	5,170	3,810
											+7		
50	130	100	72	75	81	98	98 ^{±0.25}	11	18	14		8,260	6,470
											+7		
60	160	125	95	90	96	115	120 ^{±0.50}	14	22	15	+33	11,500	9,160
											+7		
80	200	165	125	120	129	150	155 ^{±0.50}	14	26	20	+37	21,000	16,300
											+8		

1) ISO 8062-3 - DCTG 9 dimensional tolerance.

2) Determined from working bore diameter and shaft tolerance statistics. When factoring in the outer diameter of the linear bushings and the housing bore, an h6 shaft produces similar radial clearance values as specified in the "H6H7" column under "Radial clearance" for the R0610 standard linear bushing.

3) The load ratings indicated are minimal values as the orientation and direction of load cannot always be clearly defined.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Product overview

The benefits

- Lightweight, stable and low-cost linear set with reinforced plastic housing
- Designed especially for general requirements
- Also available in stainless steel for medical, chemistry and food industries
- Separate wiper seals optional

Segmental linear bushing

Explanation of short product name

Sample linear bushing:

Segmental linear bushing KBSE-20-NR

Definition of codes			KB S	E	20	NR			
Туре	Linear bushing	=KB					NR	= Stainless steel	Linear bushing version
Series	Segmental	= SE						= Normal	
Form	Closed	=						= No seals	Seals
Shaft diameter		= 20			_				

Adjustable

Sample linear set:

Linear set with segmental linear bushing LSK-20-DD-NR

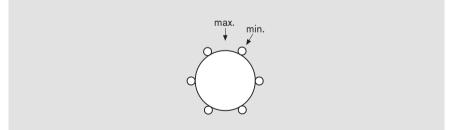
Definition of codes			LS K	20	DD	NR
Туре	Linear set	= LS				
Material (housing) (linear set only)	Plastic (with segmental linear bushing)	= K				
Form	Closed	=				
Shaft diameter		= 20		_		
Seals	With two seals	= DD			-	
Linear bushing version	Stainless steel	= NR				-
	Normal	=				

Technical data

Please observe general technical principles and follow the lubricating and installation instructions.

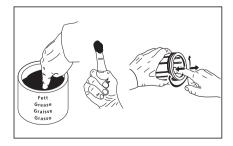
Friction

The friction coefficients μ of the unsealed segmental linear bushings are 0.001–0.004 when lubricated with oil. The friction coefficient is lowest under heavy load, but can still be above the specified value even under low load.


The table shows the friction generated by linear bushings with seals on both ends when not under radial load. They depend on speed and lubrication.

Shaft Ø d	Breakaway force	Friction
(mm)	Reference value (N)	Reference value (N)
12	3.0	1.5
16	4.5	2.0
20	5.0	2.5
25	7.0	3.0
30	9.0	4.0
40	12.0	5.0

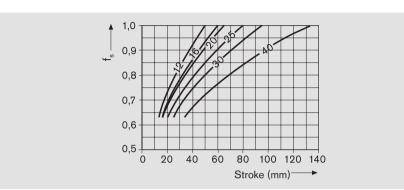
Speed	$v_{max} = 3 \text{ m/s}$
Acceleration	$a_{max} = 150 \text{ m/s}^2$
Operating temperature	-10 $^{\circ}$ C to 80 $^{\circ}$ C (normal version) -10 $^{\circ}$ C to 65 $^{\circ}$ C (stainless steel version)
Effect of load direction on load rating	Depending on installation, the listed load ratings should be chosen at the minimum or maximum position and should be based on the calculations.


maximum position and should be based on the calculations. If the load direction is clearly defined and the segmental linear bushings can be installed at the maximum position, the load ratings C_{max} (dynamic load rating) and C_{0max} (static load rating) can be used.

If directed installation is not possible or the load direction is not defined, the minimum load ratings must be used.

Initial lubrication

Segmental linear bushings do not have an initial lubrication. Grease linear bushings before use, see "Initial lubrication" Section "Lubrication" on page 21. Service life data is based on initial lubrication and relubricated linear bushings.


Installation, securing

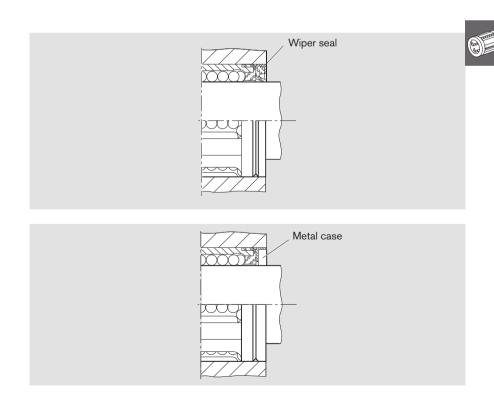
Reduced load rating with short stroke

Operating under difficult conditions

When short stroke is present, the service life of the shaft is less than that of the segmental linear bushing.

The load ratings C in the tables must therefore be multiplied by the factor f_S.

For constantly humid or damp conditions caused, e.g., by water-based coolants/lubricants, we recommend the stainless steel linear bushing with parts made of steel in accordance with ISO 683-17/EN10088.


Install the segmental linear bushings using an arbor press (see Section Installation). In order to prevent contamination in the segmental linear bushing, we recommend making sure that a steel segment is covered by the slot when installing in slotted receivers.

Securing

Installation

Secured with wiper seal

Secured with metal case

Segmental linear bushings, R0668 Normal

Design

- Balls made of rolling bearing steel
- Hardened segmental steel plates
- Ball retainer and retaining rings made of PA 11

Stainless

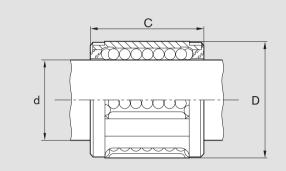
Design

- Balls made of 1.3541 steel
- Segmental steel plates made of 1.4300 steel
- Ball retainer and retaining rings made of PA 11

Shaft	Material number	Weight	
Ø d (mm)	Normal KBSE	Stainless KBSENR	(kg)
12	R0668 012 00	R0668 012 30	0.013
16	R0668 016 00	R0668 016 30	0.020
20	R0668 020 00	R0668 020 30	0.031
25	R0668 025 00	R0668 025 30	0.057
30	R0668 030 00	R0668 030 30	0.096
40	R0668 040 00	R0668 040 30	0.170

Wiper seal

Shaft	Material number	Weight	
Ø d (mm)	Wiper seal for normal version ¹⁾	Wiper seal for stainless steel version ¹⁾	(g)
12	R1331 512 00	R1331 512 30	1.1
16	R1331 516 00	R1331 516 30	2.1
20	R1331 520 00	R1331 520 30	3.5
25	R1331 525 00	R1331 525 30	4.9
30	R1331 530 00	R1331 530 30	7.1
40	R1331 540 00	R1331 540 30	10.6



Ød	Material number	Weight	
	Metal case for normal version ¹⁾	Metal case for stainless steel	
(mm)		version ¹⁾	(g)
12	R0901 043 00	R0901 043 30	0.6
16	R0901 044 00	R0901 044 30	1.6
20	R0901 045 00	R0901 045 30	2.5
25	R0901 046 00	R0901 046 30	3.4
30	R0901 047 00	R0901 047 30	4.4
40	R0901 048 00	R0901 048 30	6.7

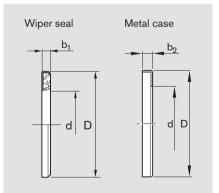
1) For axial securing.

Explanation of sample short product name

KB	SE		12	NR
Linear bushing	Segmental	Closed	Ø 12	Stainless steel

Dimen	sions (mm)	Rows of	Radial clearar	ice (μm)	Load ratings (N)								
			balls	Shaft/bore		Normal				Stainless				
							dyn. C		stat. C ₀		dyn. C		stat. C ₀	
Ød	D	С				min.	max.	min.	max.	min.	max.	min.	max.	
		js14		h6/H7	h6/K7									
12	20	24	5	+32	+17	480	570	420	620	240	290	330	490	
				0	-15									
16	25	28	5	+32	+17	720	860	620	910	360	430	490	730	
				0	-15									
20	30	30	6	+33	+18	1,020	1,080	870	1,120	510	540	690	890	
				-1	-16									
25	37	37	6	+36	+18	1,630	1,730	1,360	1,750	820	870	1,090	1,400	
				0	-18									
30	44	44	6	+36	+18	2,390	2,530	1,960	2,510	1,200	1,270	1,570	2,000	
				0	-18									
40	56	56	6	+42	+21	3,870	4,100	3,270	4,180	1,940	2,050	2,610	3,340	
				-1	-22									

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.


Wiper seal

Design:

- Metal case
- Elastomer wiper seal

Metal case Material:

- Normal (galvanized)
- or stainless steel (1.4301).

Dimensions (mm)											
Ød	D ¹⁾	D ¹⁾ b ₁									
		+0.3	+0.5								
12	20	3	3								
16	25	3	3								
20	30	4	4								
25	37	4	4								
30	44	5	5								
40	56	5	5								

Outer diameter D is oversized by about 0.1 mm.

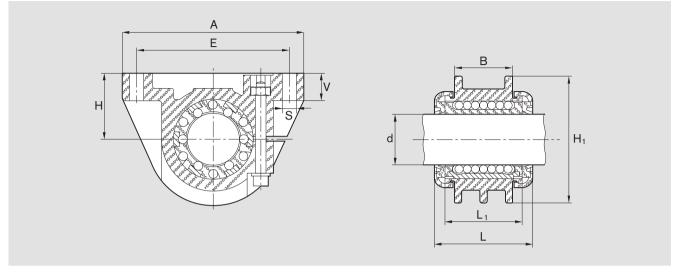
No additional securing is needed.

Linear sets with segmental linear bushings

Linear sets, R1060 Adjustable Normal or stainless

Design

- Pedestal bearing housing made of reinforced PA
- Lightweight, stable and affordable
- Segmental linear bushing
- Also available in stainless steel under KBSE-NR
- Two interchangeable wiper seals
- Radial clearance adjustable



Shaft	Material number	Weight	
Ød	Normal	Stainless ¹⁾	
(mm)	LSKDD	LSKDD-NR	(kg)
12	R1060 212 00	R1060 212 20	0.041
16	R1060 216 00	R1060 216 20	0.063
20	R1060 220 00	R1060 220 20	0.077
25	R1060 225 00	R1060 225 20	0.158
30	R1060 230 00	R1060 230 20	0.277
40	R1060 240 00	R1060 240 20	0.470

1) A2 stainless steel bolt, washer and nut

Explanation of sample short product name

LS	К		12	DD	NR
Linear set	Plastic (with segmental linear bushing)	Closed	Ø 12	With two seals	Stainless steel

Dimensions (mm)								Radial	Load ratings ²⁾ (N)					
										clearance (µm)	Normal		Stainless	
Ød	H ¹⁾	H_1	L	L ₁	Α	В	E	S	۷		dyn. C	stat. C ₀	dyn. C	stat. C ₀
12	18 ^{±0.05}	35	31	24	55	20	43 ^{±0.15}	4.4	8.0	2	480	420	240	330
16	22 ^{±0.05}	42	35	28	66	22	53 ^{±0.20}	5.5	9.5	wer to ze	720	620	360	490
20	25 ^{±0.08}	50	38	30	69	23	58 ^{±0.25}	5.5	10.5	llo et t	1,020	870	510	690
25	30 ^{±0.08}	60	46	37	87	30	72 ^{±0.25}	6.6	11.5	haft haft id s	1,630	1,360	820	1,090
30	35 ^{±0.10}	70	55	44	97	36	80 ^{±0.30}	6.6	13.0	Comes to h5 sh imit) an clearanc	2,390	1,960	1,200	1,570
40	45 ^{±0.10}	90	67	56	124	48	103 ^{±0.30}	8.6	17.0	Con to h limit limit clea	3,870	3,270	1,940	2,610

1) In relation to nominal shaft dimension d.

2) The load ratings indicated are minimal values as the orientation and direction of load cannot always be clearly defined.

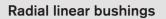
The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Radial linear bushings

Product overview

The benefits

- High-precision linear bushing for moving very heavy loads
- Radial ball redirection allows numerous rows of balls and extremely high load ratings
- Very high rigidity
- Extra smooth running
- Fully sealed or without wiper seals
- Heavy-duty guide with degrees of freedom in circumferential direction
- For applications where other linear guides tend to warp due to imprecise substructures.
- Linear sets with steel housing
- Radial compact sets for highly compact designs


Radial linear bushing

Radial compact set, open, adjustable

Explanation of short product name

Sample linear bushing:	Radial linear b KBR-30-VD	oushing	g		Radial compact set, open, adjustable KB-RCS-E-30-VD		
Definition of codes		KB R	30 VD	1			
Туре	Linear bushing	= KB		VD =	Fully sealed		Seals
Series	Radial	= R		DD =	With two seals		
	Compact set	=CS		=	No seals		
	Adjustable	= E					
Shaft diameter		= 30					

Linear set, open, adjustable

Linear set, side opening, adjustable

Sample	linear	set:
Gampio	moun	000

Linear set with radial linear bushing (side opening, adjustable) LSRSE-30-DD

Definition of codes			LS	R	Е	30	DD
Туре	Linear set	= LS					
Series	Radial, open	= R					
	Radial, side opening	= S					
Housing	Adjustable	= E					
Shaft diameter		= 30					
Seal	Two seals	= DD					

Radial linear bushings

Technical data

Please observe general technical principles and follow the installation instructions at the beginning of this catalog as well as the following additional technical specifications.

Seal

Radial linear bushings come either

- fully sealed with integrated wiper seals and linear seal, or

- with separate wiper seals

Friction

The friction coefficients μ of unsealed radial linear bushings are 0.001 – 0.002 when lubricated with oil.

Radial linear bushings either fully sealed or with separate wiper seals produce the following friction coefficients:

Shaft	haft Separate wiper seals		Fully sealed		
Ød	Breakaway force	Friction	Breakaway force	Friction	
(mm)	Reference value (N)	Reference value (N)	Reference value (N)	Reference value (N)	
30	24	8	24	12	
40	32	11	32	16	
50	40	14	40	20	
60	48	16	48	24	
80	60	20	60	30	

Speed

 $v_{max} = 2 \text{ m/s}$

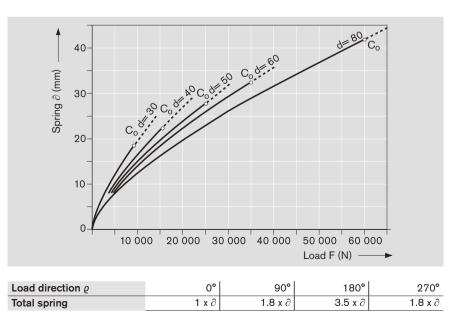
 $a_{max} = 50 \text{ m/s}^2$

Acceleration

Operating temperature

-20 °C to 100 °C Separate wiper seals: -20 °C to 80 °C, 100 °C temporarily

Rigidity


Combine a radial linear bushing with a continuously supported guide shaft for a precise, rigid design.

The following figure shows load-dependent spring. The diagram applies for installation:

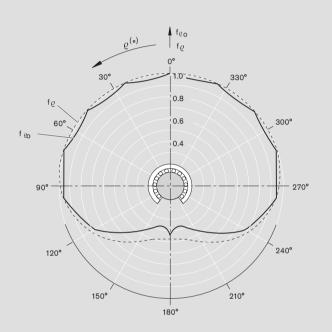
- Without preload
- With zero clearance (no preload)
- For load direction $\varrho = 0^{\circ}$ to 90° and 270° to 360°

Radial linear bushing rigidity

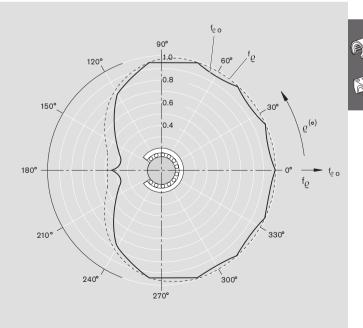
Installing with preload reduces spring. Additional spring in all parts of a linear guide (housing, shaft, shaft support rail) depends on the load direction. Reference values for total spring with R1076 and R1010 elements: load direction factor multiplied by spring ∂ (from right diagram).

Effect of load direction on load rating

The load ratings C and C₀ specified for radial linear bushings apply for load direction $\rho = 0^{\circ}$. If the external load is at an angle $\rho = 90^{\circ}$ to 270°, a reduced load rating must be factored in.


The load rating is then determined by multiplying the indicated load rating C or C_0 by the load direction factors f_{ϱ} or $f_{\varrho 0}$. This reduced load rating can be avoided by careful installation of the radial linear bushings.

Load direction factors

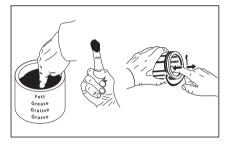

Radial linear bushings, R0678

Linear sets, R1076 Open, adjustable

Radial compact sets, R1613 Open, adjustable

Linear sets, R1078 Side opening, adjustable

Radial linear bushings


Installation, securing

Notes on installation, securingThe shaft must be continuously supported to avoid deflection. See Section "Steel shafts
with ready-mounted shaft support rails for radial linear bushings".
The radial linear bushing is pressed into the housing as shown in the installation instruc-
tions.
Additional securing is required when vibrations or higher acceleration are present, specifically when installed vertically.
During installation, make sure the shafts are first fastened to the shaft support rails, then
align the housing with the radial linear bushings to the shafts and then fasten it to the
table.

Recommended installation tolerances See the dimension table for radial linear bushings for bore tolerances. The housing is available with a slot and adjusting screw on one side in order to set the housing to zero clearance or a specific preload. Radial linear bushings are also available as complete linear sets with housing. See "General technical principles and installation instructions" at the beginning of this catalog for parallelism offsets.

Initial lubrication

Radial linear bushings do not have an initial lubrication. Grease linear bushings before use, see "Initial lubrication" Section "Lubrication" on page 21. Service life data is based on initial lubrication and relubricated linear bushings.

Note on lubrication

On-shaft lubrication only via lubricating hole until lubricant comes out.

Installation instructions for radial linear bushings

To avoid damage during installation, only press the radial linear bushing into the housing bore using a press or puller. Follow the figures and instructions below during installation. Before installation, make sure there is no oil on the outer sheath of the radial linear bushing or in the housing bore.

Place the mounting ring¹⁾ on as shown in the figure and use the adjusting screw to compress the radial linear bushing until it can be easily inserted into the housing bore by hand. The mounting ring hole must be about 0.5 mm larger than the outer diameter D of the radial linear bushing.

1) Mounting ring material number: R0940 0... 00

Shaft diameter d

Once inserted, align the opening in the radial linear bushing with the opening in the housing and remove the mounting ring.

Press the preassembled radial linear bushing into the housing with a press.

The preassembled radial linear bushing can also be pressed in with a puller. The pressure fitting must be on the ball bearings in the push rod (arrow). If this is not the case, an axial bearing must be placed on top of the push rod in order to prevent the torque that occurs from rotating the radial linear bushing in the housing.

Notes

- If the radial linear bushing and housing openings are not aligned when installed:
 - Push out the radial linear bushing (press or puller)
 - Set the mounting ring on
 - Correct the position of the opening
 - Install as shown in the figures
- The ends of the shaft must be chamfered.
- Make sure the radial linear bearing is not skewed when pressing it onto the shaft.
- The radial linear bushing may not rotate on the shaft.
- Top wiper seals must be aligned with the radial linear bushing during installation and pressed on with a press or puller.

Radial linear bushings

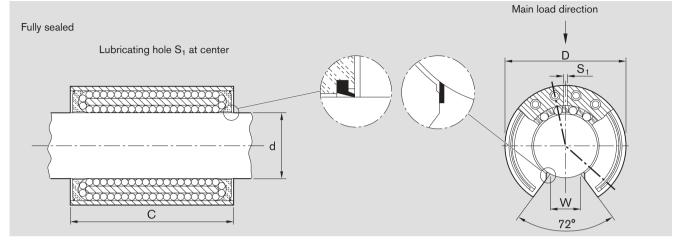
Radial linear bushings, R0678 No wiper seal or fully sealed

Design

- Hardened and machined steel sleeve
- Ball retainer made of reinforced PA
- Balls made of rolling bearing steel
- Two retaining rings
- No wiper seal
- Fully sealed
- Separate wiper seals
- Relubricatable

Shaft	ft Material number		Weight
Ød	No wiper seal Fully sealed		
(mm)	KBR	KBRVD	(kg)
30	R0678 030 00	R0678 230 45	0.7
40	R0678 040 00	R0678 240 45	1.4
50	R0678 050 00	R0678 250 45	2.5
60	R0678 060 00	R0678 260 45	4.9
80	R0678 080 00	R0678 280 45	10.4

Wiper seals



	Material number Wiper seals	Weight (kg)
30	R1331 930 00 ¹⁾	0.050
40	R1331 940 00 ¹⁾	0.075
50	R1331 950 00 ¹⁾	0.145
	R1331 960 00 ¹⁾	0.230
80	R1331 980 00 ¹⁾	0.400

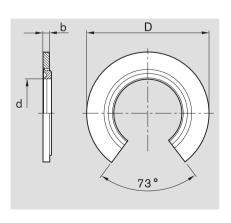
1) Please inquire about delivery time

Explanation of sample short product name

KB	R	30	VD
Linear bushing	Radial	Ø 30	Fully sealed

Dimensio	ns (mm)				Rows of	Radial clear	ance (μm)		Load ratings ³⁾ (N)
Ød	D	C	W ¹⁾	S1	balls	h6/H6	h6/JS6 ²⁾	h6/K6 ²⁾	dyn. C	stat. C ₀
		h11								
30	60	75	14.0	3	10	+21	+12	+6	0.500	0 5 0 0
30	60	75	14.0	3	12	-10	-20	-25	8,500	9,520
	75	100	19.5	3	10	+23	+13	+8	10.000	10.000
40	75	100	19.5	3	12	-13	-22	-28	13,900	16,000
50	00	105	24.5	0	10	+25	+14	+7	00.000	04 400
50	90	125	24.5	3	12	-12	-23	-30	20,800	24,400
<u></u>	110	150	00.0	4	10	+26	+15	+8	00 500	04.100
60	110	150	29.0	4	12	-15	-26	-33	29,500	34,100
	1.45	000	00.0	4	10	+29	+16	+8	54.000	01 500
80	145	200	39.0	4	12	-15	-27	-36	54,800	61,500

1) Minimum size in relation to shaft diameter d.


2) Note reduction in service life due to high preload (see tables TB-06-052-05 und TB-06-052-06).

3) The load ratings apply for the main load direction $\rho = 0^{\circ}$.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Wiper seals

- Design
- Steel retaining ring
- Elastomer wiper seal

Dimensions (mm)								
Ød	D ⁴⁾	b						
30	60	5						
40	75	5						
50	90	7						
60	110	7						
80	145	7						

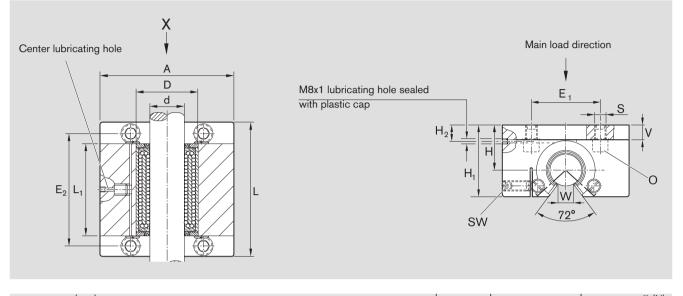
 Outer diameter D is oversized by about
 0.1 mm. Additional securing is not required except where vibrations or high acceleration are present. Linear sets with radial linear bushings

Linear sets, R1076 Open, adjustable

Design

- Precision housing (steel)
- Radial linear bushing
- Two wiper seals
- Relubricatable

When combined with precision steel shafts and shaft support rails, these linear sets can be used to create heavy-duty guides with extremely high rigidity.


	Shaft	Material number with two wiper seals	Weight
	Ød	LSREDD	
	(mm)		(kg)
	30	R1076 230 20 ¹⁾	6.1
_	40	R1076 240 20 ¹⁾	11.8
	50	R1076 250 20 ¹⁾	19.7
		R1076 260 20 ¹⁾	38.4
_	80	R1076 280 20 ¹⁾	76.1

1) Please inquire about delivery time

Explanation of sample short product name

LS	R	E	30	DD
Linear set	Radial, open	Adjustable	Ø 30	With two seals

See page 138 for more information on short product names.

Dime	nsion	s (mm	ı)												Radial	Tolerance	Load rati	ngs ⁵⁾ (N)
Ød	D	A ¹⁾	L ¹⁾	L ₁	н	H ₁ ¹⁾	H_2	V1)	E ₁	E ₂	S	W ²⁾	O ³⁾	SW	clearance	For dimension H ⁴⁾	dyn. C	stat. C ₀
				+0.5					±0.5	±0.5	H13				(_µ m)	(_µ m)		
30	60	140	130	84	48	75	18.0	16	75	108	11.0	14.0	M10x30	5	iaft (lower clearance	+15 -5	8,500	9,520
40	75	170	160	109	60	94	22.5	20	90	135	13.5	19.5	M12x40	6	50	+17 -4	13,900	16,000
50	90	200	200	138	70	110	25.0	23	110	170	17.5	24.5	M16x50	8	an h5 sl t to zero	+18 -5	20,800	24,400
60	110	240	240	163	85	135	30.0	28	130	200	22.0	29.0	M20x60	10	es with a and set	+23 -4	29,500	34,100
80	145	310	310	213	110	175	37.5	35	170	260	26	39.0	M24x80	12	Comes limit) an	+22 -5	54,800	61,500

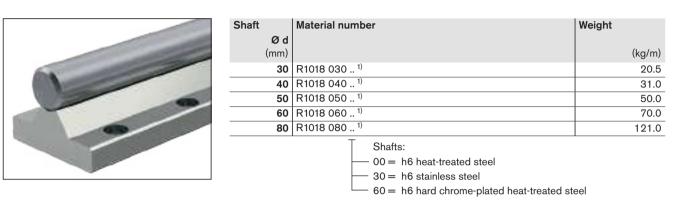
1) Tolerance: js16.

2) Minimum size in relation to shaft diameter d.

3) ISO 4762-8.8 socket head cap bolts. Recommendation applies for bolting in steel or cast iron threads.

4) Clamped (fastened), in relation to nominal shaft dimension d.

5) The load ratings apply for the main load direction $\rho = 0^{\circ}$.


The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Steel shafts with ready-mounted shaft support rails for radial linear bushings

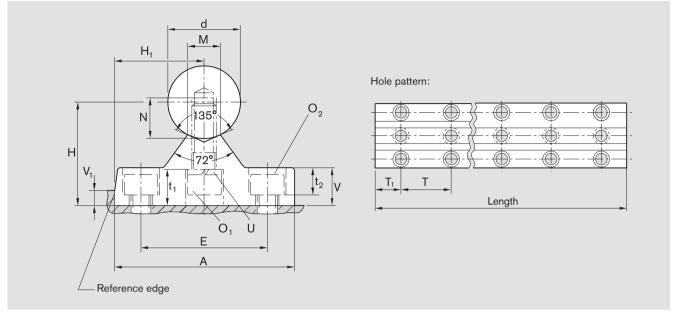
R1018 steel shaft with ready-mounted shaft support rail

Material

- Shaft support rail: Steel

1) Please inquire about delivery time

Ordering example:


Shaft diameter 30 mm, h6, heat-treated steel, 1,200 mm long, ready-mounted shaft support rail R1052 1300 00 is ordered as: R1018 030 00/1200 mm.

R1052 shaft support rails, length (mm) $600^{-0.5}_{-1.5}$

Shaft	Material number	Weight
Ød		
(mm)		(kg)
30	R1052 130 00 ¹⁾	9.0
40	R1052 140 00 ¹⁾	12.7
50	R1052 150 00 ¹⁾	20.7
60	R1052 160 00 ¹⁾	29.0
80	R1052 180 00 ¹⁾	48.9

1) Please inquire about delivery time

Dimensions (mm)

2	1310113 (,												
Ød	A	H ¹⁾	H ₁	v	V ₁ ²⁾	М	Е	т	t ₁	t ₂	Ν	O ₁	0 ₂	U
		js7	js7			-0.5						ISO 4762-8.8	ISO 4762-8.8	DIN7980 ³⁾
30	80	50	40.0	19	7.0	13	55	60	22.0	13.5	17	M10x30	M10	10
40	100	60	50.0	22	8.5	18	70	75	22.0	16.0	21	M12x40	M12	12
50	125	75	62.5	30	9.0	23	90	100	28.0	21.0	28	M16x50	M16	16
60	150	90	75.0	34	13.0	27	110	120	34.0	25.5	32	M20x60	M20	20
80	200	115	100.0	42	18.0	37	140	150	38.5	30.5	40	M24x80	M24	24

1) Measured with gauging shaft, nominal dimension d and length about 50 mm.

2) Recommended design; no reference edge on opposite side (V_1) and align parallel over shafts.

3) DIN 7980 discontinued. Spring washer commercially available.

Linear sets with radial linear bushings

Linear sets, R1078 Side opening, adjustable

Design

- Precision housing with side opening (steel)
- Radial linear bushing
- Two wiper seals
- Relubricatable

Significant reduction in load rating must be factored in if open linear bushings are under load opposite the direction of opening.

This linear set allows a radial linear bushing to be installed on the side to ensure total utilization of the high load ratings.


1	Shaft	Material number with two wiper seals	Weight
	Ød	LSRSEDD	(1)
	(mm)		(kg)
	30	R1078 230 20 ¹⁾	7.8
		R1078 240 20 ¹⁾	15.0
		R1078 250 20 ¹⁾	27.5
	60	R1078 260 20 ¹⁾	48.0
	80	R1078 280 20 ¹⁾	105.0

1) Please inquire about delivery time

Explanation of sample short product name

LS	RS	E	30	DD
Linear set	Radial, side opening	Adjustable	Ø 30	With two seals

See page 138 for more information on short product names.

Dimensions (mm)

Ød	D	A1)	A11)	A21)	L ¹⁾	L1	H2 ¹⁾	н	H1 ¹⁾	V ¹⁾	V1	E2	E3	E4	S	W ²⁾	SW1	SW2	O ³⁾	
						+0.5														
30	60	110	83	27	140	84	30	48	118	18	11.0	110	28	65	13.5	14.0	17	5	M12x30	
40	75	135	100	35	180	109	35	60	145	25	15.0	142	40	76	17.5	19.5	19	6	M16x40	6
50	90	165	125	40	230	138	45	70	170	30	17.5	180	50	95	22.0	24.5	24	8	M20x50	e
60	110	200	150	50	275	163	55	85	205	35	20.5	215	60	115	26.0	29.0	30	10	M24x60	
80	145	265	200	65	345	213	70	110	265	45	25.5	275	75	155	33.0	39.0	36	12	M30x80	

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Shaft	Radial	Tolerance	Load ratings	5) (N)
Ød	clearance (_µ m)	For dimension H^{4} (µm)	dyn. C	stat. C ₀
30	lower rance	+15 -5	8,500	9,520
40	shaft (o clea	+17 -4	13,900	16,000
50	Comes with an h5 shaft (lower limit) and set to zero clearance	+18 -5	20,800	24,400
60	s with and se	+23 -4	29,500	34,100
80	Come limit) á	+22 -5	54,800	61,500

- 1) Tolerance: js16.
- 2) Minimum size in relation to shaft diameter d.
- DIN 6912-8.8 socket head cap bolts. Recommendation applies for bolting in steel or cast iron threads.
- 4) Clamped (fastened), in relation to nominal shaft dimension d.
- 5) The load ratings apply for the main load direction in the arrow direction $F_{\rm H1}$ or $F_{\rm H2}.$

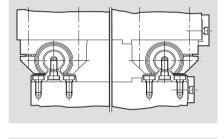
Radial compact sets

Technical data, installation

Friction, speed, acceleration, operating temperature, impact of load direction on load rating and rigidity The values that apply for the radial linear bushing can be used for this design.

Seal friction without radial load

Shaft Ø d	Breakaway force	Friction
(mm)	^(N) about	(N) about
30	24	12
40	32	16
50	40	20
60	48	24
80	60	30


Installation

Before installation

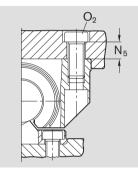
Make sure the contact surface for the radial compact set is level. Variations impact radial clearance. The shafts must be chamfered. Do not skew the radial compact sets when pushing them onto the shaft.

Shaft support rails

See Section "Steel shafts with ready-mounted shaft support rails".

Shaft support rails machined at the machine bed (low height)

- Manufacture shaft support rails according to parallelism requirements (see "Parallelism" under general technical specifications and installation instructions).
- Screw on shafts.
- Install radial compact sets (see Section "Steel shafts with ready-mounted shaft support rails").


Recommended bolts for	
fastening the shafts	

Ø d (mm)	ISO 4762-8.8
30	M10x30
40	M12x40
50	M16x50
60	M20x60
80	M24x80

Corner radii, reference edges and bolting r_2 h_2 h_2

Dim	ensior	15 (m	m)				•	tening torque (Nm)
Ød	r ₁ max.	h ₁	r ₂ max.	h ₂	O DIN 7984-8.8	O ₁ ISO 4762-8.8	0	0 ₁
30	0.6	6	0.6	6	M10x20	M10x40	32	46
40	0.6	6	0.6	6	M12x25	M12x45	56	80
50	1.2	8	0.6	8	M16x30	M16x60	136	195
60	1.2	8	0.6	16	M20x40	M20x80	270	385
80	1.2	10	0.6	20	M24x50	M24x100	460	660

Radial compact set bolting from bottom

Dimer		Tightening	
Ød	N ₅	O ₂ ISO 4762-8.8	torque (Nm)
30	17	M12x30	55
40	24	1 M16x40	100
50	28	M20x50	240
60	30	M27x60	500
80	45	M30x80	800

	Tapered pin/straight pin
(mm)	(hardened)
30	8x60
40	10x80
50	12x100
60	14x120
80	16x160

Radial clearance

Pinned fitting

The adjustable radial compact sets come with an h5 shaft (lower limit) and set to zero clearance. If **preload** is desired, proceed as follows:

- Determine the diameter of the guide shaft
- Find and insert an adjusting shaft that is smaller by the degree of preload
- Adjust with the adjusting screw until there is slight resistance when rotating the shaft

Note on lubrication

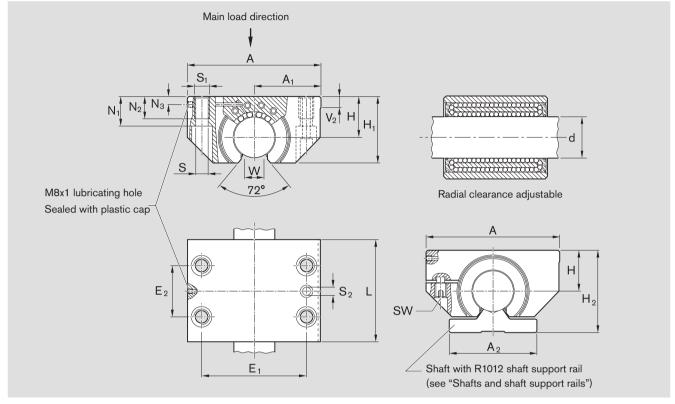
On-shaft lubrication only until lubricant comes out.

Radial compact sets

Radial compact sets, R1613 Open, adjustable

Design

- Hardened and machined bearing pedestal made of rolling bearing steel
- Ball retainer made of reinforced PA
- Balls made of rolling bearing steel
- Two retaining rings
- Fully sealed (with integrated wiper seals and linear seals)


Shaft Ø d	Material numbers	Weight
(mm)	KB-RCS-EVD	(kg)
30	R1613 300 00	1.75
40	R1613 400 00	3.50
50	R1613 500 00	7.10
60	R1613 600 00 ¹⁾	11.90
80	R1613 800 00 ¹⁾	29.60

1) Please inquire about delivery time

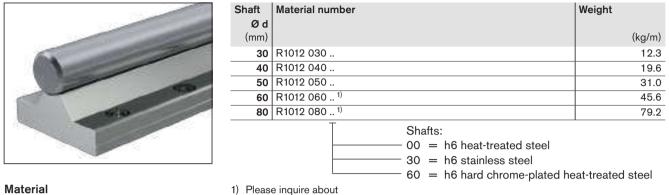
Explanation of sample short product name

KB	RCS	E	30	VD
Linear bushing	Radial compact set	Adjustable	Ø 30	Fully sealed

See page 138 for more information on short product names.

Dim	Dimensions (mm)													$\begin{array}{c c} \textbf{Radial} & \textbf{Load rat} \\ \textbf{clearance} (\mu m) & (N) \\ \end{array}$		tings ⁴⁾						
Ød	A	A ₁ ±0.008	A ₂	H ¹⁾ ±0.008	H ₁	H ₂	L	E1	E ₂	S	S ₁	S ₂ ²⁾	N ₁	N ₂	N ₃	V ₂	W ³⁾	SW		dyn. C	stat. C ₀	
30	100	50.0	68	32	53.0	65	75	76	40	10.5	M12	7.7	21	15	9	6	14.0	5	aft (lower clearance	8,500	9,520	
40	125	62.5	85	40	66.0	80	100	94	50	14.0	M16	9.7	27	18	11	6	19.5	6	l s o	13,900	16,000	A
50	160	80.0	105	50	81.5	100	125	122	65	17.5	M20	11.7	35	24	12	8	24.5	8	an h5 sh t to zero	20,800	24,400	
60	190	95.0	130	60	97.0	120	150	150	75	22.0	M27	13.7	42	32	13	16	29.0	10	es with a and set	29,500	34,100	<u>O</u> I
80	260	130.0	170	80	130.0	160	200	205	100	26.0	M30	15.7	57	36	15	16	39.0	12	Comes limit) an	54,800	61,500	-

1) Clamped (fastened), in relation to nominal shaft dimension d.

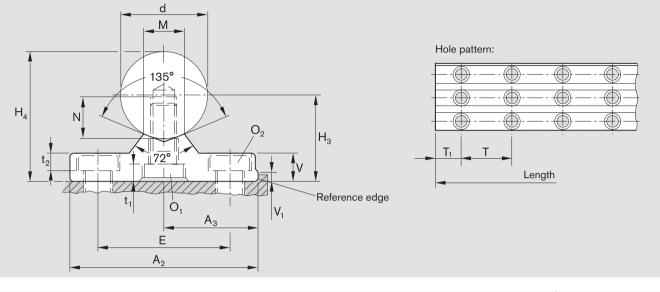

2) Predrilled hole for pinned fitting.

3) Minimum size in relation to shaft diameter d.

4) The load ratings apply for the main load direction $\rho = 0^{\circ}$.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26. Steel shafts with ready-mounted shaft support rails for radial compact sets

R1012 steel shafts with ready-mounted shaft support rail



- Shaft support rail: Steel

 Please inquire abo delivery time

Ordering example:

Shaft diameter 40 mm, h6, heat-treated steel, 1,500 mm long, ready-mounted shaft support rail is ordered as: R1012 040 00/1500 mm.

Dime	Dimensions (mm)												Grading tolerances (µm)			
																h6 shaft
Ød	A ₂	A ₃	H ₃ 1)	H ₄	v	V ₁	М	Е	O ₁	t ₁	Ν	O ₂	t ₂	Т	H ₃ ²⁾	H ₄ ³⁾
		±0.02					-0.5		DIN 6912-8.8			DIN 7984-8.8				
30	68	34.0	33	48	11	6	13	46	M10x25	9.0	17	M10	6.8	60	204)	29
40	85	42.5	40	60	13	6	18	58	M12x30	10.0	21	M12	8.4	75	20 ⁴⁾	31
50	105	52.5	50	75	17	8	23	74	M16x40	10.8	28	M16	10.5	100	204)	31
60	130	65.0	60	90	20	8	27	90	M20x40	16.0	32	M20	12.5	120	20	33
80	170	85.0	80	120	26	10	37	120	M24x60	16.0	40	M24	16.0	150	20	33

1) Tolerance: ± 0.02 mm; comes with a height grade of 20 $\mu m.$

2) Measured with gauging shaft, nominal dimension d and length about 50 mm.

3) Includes shaft tolerance (determined from statistics).

4) Up to 1,800 mm length with parallelism of 10 μm available upon request.

Torque-resistant linear bushings

Product overview

The benefits

- For self-supporting, torsion-resistant guides with only one shaft
- 1, 2 or 4 ball guide grooves for transferring torque
- Large variety of forms
- Torque-resistant linear bushings with adjusting screw come set to zero clearance
- Matching shaft profiles with machined ball guide grooves
- Shafts machined to customer specification
- Optional separate wiper seals
- Various flanged versions
- Various steel or aluminum housing versions

Torque-resistant linear bushings

R0696 0

Torque-resistant linear bushing type 1, one ball guide groove

R0696 3 page 166

Torque-resistant linear bushing type 2, two ball

guide grooves

R0720 page 168

Torque-resistant compact linear bushing

Explanation of short product name

page 166

Sample linear bushing:

Torque-resistant linear bushing with shaft KBDRC2-20-WV-X90-1200

Definition of coo		KBC	DR	2	20	WV-X90	1200				
Туре	Linear bushing	= KB							1200	= Standard length as per table	Shaft length
Series	Torque	= DR							Specia	I = Customized shaft	(mm)
	Compact	= C							K	= Shaft length cut to size	
Track	One ball guide groove	= 1			_				X90	X90 stainless steel shaft	Shaft
	Two ball guide grooves	s = 2							WO	= Hollow shaft	
Shaft diameter		= 20							WV	= Shaft included	

Aluminum housing

R1098 2.. page 170 Type 1: One ball guide groove

R1099 2.. page 172

R1098 5.. page 170 Type 2: Two ball guide grooves



R1099 5.. page 172

Steel housing

R1097 2.. page 176

R1096 5.. page 174 Type 2: Two ball guide

R1097 5.. page 176

Type 1: One ball guide groove

R0721

Installation

Sample linear set:

R1096 2..

R0722

 \triangle The linear sets come preassembled and set to zero clearance. When pulling out the shaft, the set screws must be loosened and the torque-resistant linear bushing reset.

Linear set with torque-resistant linear bushing

LSHDR1T-20-WV-X90-1200

DE

Definition of cod	les			LS	Н	DR	1	Т	20	WV-X	90	1
Туре	Linear set	=	LS									
Material	Steel	=										
(housing)	Aluminum	=	А									
Form	Sleeve design	=	Н									
	Flanged	=	F									
Series	Torque-resistant linear bushing	=	DR									
Track	One ball guide groove	=	1									
	Two ball guide grooves	=	2									
Housing	Normal	=										
	Tandem	=	Т									
Shaft diameter		=	20									

1200				
	1200	=	Standard length as per table	Shaft
	Specia	=	Customized shaft	length
	Κ	=	Shaft length cut to size	(mm)
	X90	=	X90 stainless steel shaft	Shaft
	WO	=	Hollow shaft	
	WV	=	Shaft included	

Torque-resistant linear bushings

Product overview

The benefits

- For self-supporting, torsion-resistant guides with only one shaft
- 4 ball guide grooves for transferring torque
- Matching shaft profiles with machined ball guide grooves
- Shafts machined to customer specification _
- Various flanged versions

Torque-resistant linear bushing Four ball guide grooves

Installation

Torque-resistant linear bushing Flanged, with four

ball guide grooves

page 188

Torque-resistant linear bushing Miniature flanged, with four ball guide grooves

Torque-resistant linear bushing Rotary flanged Four ball guide grooves

Linear bushing and shaft for torque-resistant linear bushings with four ball guide grooves come separately. Align the tracks when inserting the shaft and make sure they are not skewed.

Sample linear bushing:

Torque-resistant linear bushing KBDR4-H-20DD

Definition	of codes	KB DR 4 H	20 DD	
Туре	Linear bushing	= KB	DD = Two seals	Seal
Series	Torque	= DR	D = 1 seal	
Track	4 ball guide grooves	= 4	= 20	Size ¹
	Sleeve design	= H		
	Flanged	= F		
	Miniature flanged	= FM		
	Rotary bearing	= LR		

1) Shaft diameter varies (see dimension table)

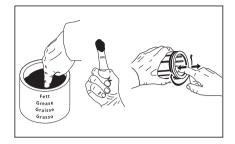
R0724

Precision steel shaft with four ball guide grooves

Sample shaft:

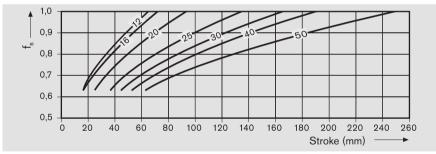
Shaft, torque-resistant linear bushing WVDR4-20-1200

Definition of codes			WV	DR	4	20	1200
Туре	Shaft	= WV					
	Hollow shaft	=WO					
Series	Torque	= DR					
Track	4 ball guide grooves	= 4			1		
Size ¹		= 20					
Shaft length (mm)		= 1200					


1) Shaft diameter varies (see dimension table)

Torque-resistant linear bushings

Technical data


Initial lubrication

Torque-resistant linear bushings do not have an initial lubrication. Grease linear bushings before use, see "Initial lubrication" Section "Lubrication" on page 21. Service life data is based on initial lubrication and relubricated linear bushings.

Please observe general technical principles and follow the lubricating and installation instructions.

Speed	$v_{max} = 3 \text{ m/s}$
Acceleration	$a_{max} = 150 \text{ m/s}^2$
Operating temperature	-10 °C to 80 °C
Reduced load rating with short stroke	When short stroke is present, the service life of the shaft is less than that of the torque-resistant linear bushing. The load ratings C in the tables must therefore be multiplied by the factor f _S .

Load rating and service life

When radial load and torque produce the same load, the equivalent total load must be determined for the life expectancy calculation.

$$F_{comb} = F_{res} + C x \frac{M_x}{M_t}$$

$$L = \left(\frac{C}{F_{comb}}\right)^3 x \ 10^5 \text{ m}$$

$$F_{comb} = Combined equivalent (N) \ load (N)$$

$$F_{res} = Resulting radial \ load (N)$$

$$C = Dynamic \ load rating (N)$$

$$M_x = Dynamic \ torque \ (Nm) \ around \ X-axis$$

$$M_t = Dynamic \ torsional \ load (Nm) \ moment$$

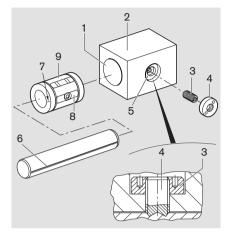
$$L = Nominal \ service \ life (m)$$

Service life is calculated as follows under torque load only:

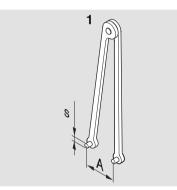
$$M_{m} = \sqrt[3]{|M_{1}|^{3} x \frac{q_{s1}}{100\%} + |M_{2}|^{3} x \frac{q_{s2}}{100\%} + ... + |M_{h}|^{3} x \frac{q_{sn}}{100\%}}$$
$$L = \left(\frac{M_{t}}{M_{m}}\right)^{3} x \ 10^{5} m$$

q ₁ , q ₂ q _n	 Travel rat 	tios for M ₁ , M ₂ , M _n	(%)	
$M_1, M_2 \dots M_n$	= Stepped	individual dynamic loads in stages	(Nm)	
M _n	= 1 to n		(Nm)	
M _t	 Dynamic torsional load moment 			
M _m	M _m = equivalent dynamic torque			
n	= No. stages		(-)	
L	= Nominal	service life	(m)	
 up to 1,200 2.000 mm; 		0.1 mm 0.2 mm		
- 2,000 mm.		0.2 11111		

Shaft straightness


Stabilized installation

A fixed mount requires two torque-resistant linear bushings. We recommend the tandem version (with two torque-resistant linear bushings) for the linear sets.


Torque-resistant linear bushings

Installing torque-resistant linear bushings

Installation

Adjusting the set screws

 \triangle The linear sets come preassembled and set to zero clearance. When pulling out the shaft, the set screws must be loosened and the torque-resistant linear bushing reset.

- Chamfer and clean the hole (1) in the housing (2).
- Oil the set screw (3).
- Make sure the lock nut (4) can move freely on the set screw (3).
- Make sure the set screw (3) can move freely in the thread (5). Deburr the thread runout if necessary.
- Remove the transport packing from the linear bushing.

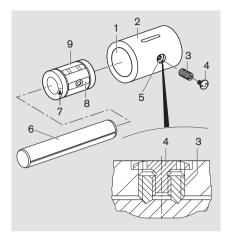
Δ Do not strike the linear bushings with a hammer.

- Place the linear bushing (9) in the housing (2) by hand.
- Align the countersunk steel bearing plate (8) to the thread (5) in the housing.
- Align one ball guide groove (6) to the mark (7) on the labeling field of the linear bushing.
- Insert the shaft without skewing it.
- Tighten the set screw until there is resistance.
- Move the shaft back and forth. While doing so, attempt to turn it in both directions. Use a hexagon screwdriver to tighten the set screw.
- Tighten the set screw to M_{GA} for type 1 (one ball guide groove).
- For type 2 (two ball guide grooves), tighten one set screw to 0.5 x M_{GA}, then the other to M_{GA}.
- Secure the set screw with the lock nut. Use a face wrench (1) to do so. Make sure the set screw does not move while tightening the lock nut. Tightening torque = M_{GK}.
- After installation, the friction should be F_R. If the friction is considerably different, loosen and readjust the set screws.
- Do not attempt to pull the shaft out.

Shaft	Face wrench (1) (mm)		Tightening torque (Ncr	n)1)	Friction F _R about
Ød			Set screw	Lock nut	(one linear bushing)
(mm)	s	A	M _{GA}	M _{GK}	(N)
12	2.5	10.0	8	400	1.5
16	2.5	10.0	11	400	2.0
20	3.0	15.0	30	1,500	3.0
25	3.0	15.0	45	1,500	4.5
30	3.0	19.5	70	2,000	6.0
40	3.0	19.5	100	2,000	8.0
50	3.0	25.0	180	3,000	12.0

1) Tightening torque at friction factor 0.125

Installing the seal


• Insert the seal onto the shaft and align the lip in the groove.

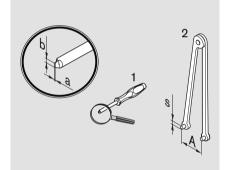
• Press the seal into the locating hole.

Each installed seal increases the friction above F_R . Two installed seals increases the table value by roughly three times.

Installing torque-resistant compact linear bushings

Installation

 \triangle The linear sets come preassembled and set to zero clearance. When pulling out the shaft, the set screws must be loosened and the torque-resistant linear bushing reset.


- Chamfer and clean the hole (1) in the housing (2).
- Oil set screw (3) and lock screw (4).
- Make sure the lock screw (4) can move freely on the set screw (3).
- Make sure the set screw (3) can move freely in the thread (5). Deburr the thread runout if necessary.
- Remove the transport packing from the linear bushing.

Δ Do not strike the linear bushings with a hammer.

Place the linear bushing (9) in the housing (2) by hand.

- Align the countersunk steel bearing plate (8) to the thread (5) in the housing.
- Align one ball guide groove (6) to the mark (7) on the labeling field of the linear bushing.
- Insert the shaft without skewing it.

Adjusting the set screws

- Tighten the set screw until there is resistance.
- Move the shaft back and forth. While doing so, attempt to turn it in both directions. Use a screwdriver (1) to tighten the set screw.
- Tighten the set screw to M_{GA} for shaft diameters 12 and 16.
- For shaft diameters 20 to 50, tighten one set screw to 0.5 x M_{GA} , then the other to $M_{GA}.$
- Use a face wrench (2) to insert the lock screw into the set screw and tighten it to M_{GK}.
- After installation, the friction should be F_R. If the friction is considerably different, loosen and readjust the set screws.
- Do not attempt to pull the shaft out.

Shaft	Screwdriver (1)		Face wrench (2)		Tightening torque (Ncm)1)		Friction F _R about
Ød		(mm)		(mm)	Set screw	Lock screw	(one linear bushing)
(mm)	а	b	S	А	M _{GA}	М _{GK}	(N)
12	0.8	5	1.5	5.5	8	110	1.5
16	0.8	5	1.5	5.5	11	110	2.0
20	1.0	8	2.0	8.0	30	180	3.8
25	1.0	8	2.0	8.0	45	380	5.6
30	1.2	10	2.5	10.0	70	800	7.5
40	1.2	10	2.5	10.0	100	800	10.0
50	1.6	14	3.0	13.0	180	1,300	15.0

1) Tightening torque at friction factor 0.125

Installing the seal

· Insert the seal onto the shaft and align the lip in the groove.

• Press the seal into the locating hole.

Each installed seal increases the friction above $\mathsf{F}_{\mathsf{R}^{\text{.}}}$ Two installed seals increases the table value by roughly three times.

DEG

- Hardened steel set screw

Customized shaft

Wiper seal must be ordered

separately.

Steel lock nut

Torque-resistant linear bushings

Torque-resistant linear bushings, R0696 0.. Type 1: One ball guide groove

Torque-resistant linear bushings, R0696 3.. Type 2: Two ball guide grooves

Design

- Ball retainer and outer sleeve made of PA or POM
- Hardened steel bearing plates

groove	C C		
	Standard length as per table	e-resistant linear bushing w Shaft length cut to size ¹	
	KBDR1WV	KBDR1K	KBDR1

- Balls made of rolling bearing steel

- Precision steel shaft with ball guide

	KBDR1WV	KBDR1K	KBDR1SPECIAL
12	R0696 012 80	R0696 012 89	R0696 012 86
16	R0696 016 80	R0696 016 89	R0696 016 86
20	R0696 020 80	R0696 020 89	R0696 020 86
25	R0696 025 80	R0696 025 89	R0696 025 86
30	R0696 030 80	R0696 030 89	R0696 030 86
40	R0696 040 80	R0696 040 89	R0696 040 86
50	R0696 050 80	R0696 050 89	R0696 050 86

85 Shaft length 900 mm

- 87 Shaft length 1,200 mm
- 88 Shaft length 2,000 mm

Material number for torque-resistant linear bushing without shaft: R0696 0.. 00

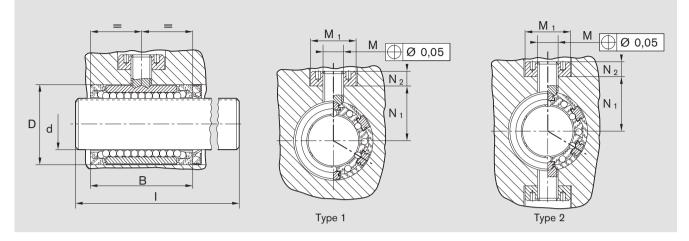
Type 2: Two ball guide grooves

Shaft	haft Material number for torque-resistant linear bushing with shaft						
Ød	Standard length as per	Shaft length cut to size ¹	Customized shaft				
(mm)	table						
	KBDR2WV	KBDR2K	KBDR2SPECIAL				
20	R0696 320 80	R0696 320 89	R0696 320 86				
25	R0696 325 80	R0696 325 89	R0696 325 86				
30	R0696 330 80	R0696 330 89	R0696 330 86				
40	R0696 340 80	R0696 340 89	R0696 340 86				
50	R0696 350 80	R0696 350 89	R0696 350 86				
85 Shaft length 900 mm							

87 Shaft length 1,200 mm

- 88 Shaft length 2,000 mm

Material number for torque-resistant linear bushing without shaft: R0696 3.. 00
1) Also available with hollow shaft for shaft diameters 25 and higher: R0696 ... 69 or with ISO 683-17/EN 10088 stainless steel solid shaft: R0696 ... 79.



Shaft Ø d	Material numbe Wiper seals	Weight	
(mm)	Туре 1	Type 2	(g)
12	R1331 112 00	-	1.6
16	R1331 116 00	-	2.0
20	R1331 120 00	R1331 320 00	4.5
25	R1331 125 00	R1331 325 00	6.6
30	R1331 130 00	R1331 330 00	9.3
40	R1331 140 00	R1331 340 00	17.0
50	R1331 150 00	R1331 350 00	24.0

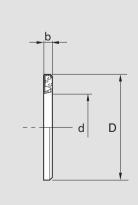
Explanation of sample short product name

KB	DR	2	25	WV	2000
Linear bushing	Torque	Two ball guide grooves	Ø 25	Shaft included	2000

See page 158 for more information on short product names.

Dimens	sions (mi	m)						Standard	Torsional lo	oad mo-	Load rat	ings² (N)	Weight	
Ød					length	ment M _t (N	m)			Linear	Shaft			
Type 1	Type 2	D ¹⁾	В	M	M ₁	N_1	N_2	I	Type 1	Type 2	dyn. C	stat. C ₀	bushing	
					+0.1			(mm)					(kg)	(kg/m)
12	-	22	32	M6x0.5	14	15.5	5.0	400	2.0	-	640	420	0.026	0.89
16	-	26	36	M6x0.5	14	19.5	5.0	400	3.3	-	780	530	0.032	1.57
20	20	32	45	M10x1	22	21.5	8.0	500	7.5	12	1,550	1,050	0.064	2.45
25	25	40	58	M10x1	22	28.5	8.0	500	15.0	24	3,030	2,180	0.135	3.80
30	30	47	68	M12x1	26	32.0	9.5	600	23.0	37	3,680	2,790	0.210	5.50
40	40	62	80	M12x1	26	44.0	9.5	600	53.0	86	6,320	4,350	0.390	9.80
50	50	75	100	M16x1.5	34	52.0	12.5	600	103.0	167	9,250	6,470	0.680	15.30

1) Recommended installation bore: D^{JS7}.


2) The load ratings indicated are minimal values as the load direction cannot be clearly defined.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Wiper seal

Design

- Galvanized metal case
- Elastomer wiper seal

Dimensions (r	nm)		
Ød	D ³⁾	b	
		+0.3	
12	22	3	
16	26	3	
20	32	4	
25	40	4	
30	47	5	
40	62	5	
50	75	6	

3) Outer diameter D is oversized by about 0.1 mm.

No additional securing is needed.

Torque-resistant compact linear bushings, R0720

Design

- Ball retainer and outer sleeve made of PA or POM
- Hardened steel bearing plates
- Balls made of rolling bearing steel
- Precision steel shaft with ball guide groove
- Hardened steel set screw
- Steel lock nut

Shaft	Material number for torqu	e-resistant linear bus	hing with shaft
Ød	Standard length as per	Shaft length cut to	Customized shaft
(mm)	table	size ¹	
	KBDRCWV	KBDRCWV-K	KBDRCSPECIAL
12	R0720 012 80	R0720 012 89	R0720 012 86
16	R0720 016 80	R0720 016 89	R0720 016 86
20	R0720 320 80	R0720 320 89	R0720 320 86
25	R0720 325 80	R0720 325 89	R0720 325 86
30	R0720 330 80	R0720 330 89	R0720 330 86
40	R0720 340 80	R0720 340 89	R0720 340 86
50	R0720 350 80	R0720 350 89	R0720 350 86
	85 Shat	ft length 900 mm	

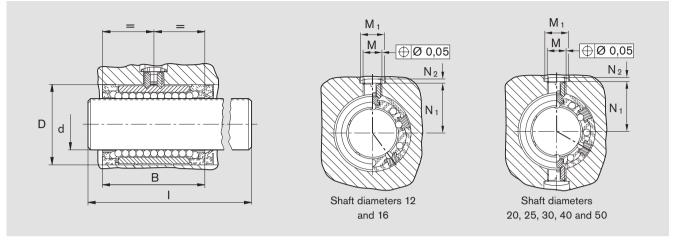
87 Shaft length 1,200 mm

88 Shaft length 2,000 mm

Material number for torque-resistant compact linear bushing without shaft: Shaft diameters 12 and 16: R0720 0.. 00 Shaft diameters 20 to 50: R0720 3.. 00

1) Also available with hollow shaft for shaft diameters 25 and higher: R0720 ... 69 or with ISO 683-17/EN 10088 stainless steel solid shaft: R0720 ... 79.

Shaft Ø d	Material number Wiper seals	Weight
(mm)		(g)
12	R1331 112 00	1.6
16	R1331 116 00	2.0
20	R1331 320 00	4.5
25	R1331 325 00	6.6
30	R1331 330 00	9.3
40	R1331 340 00	17.0
50	R1331 350 00	24.0


Wiper seal must be ordered separately.

Explanation of sample short product name

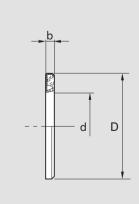
KB	DR	С	2	20	WV	1200
Linear bushing	Torque	Compact	Two ball guide grooves	Ø 20	Shaft included	1,200 mm

See page 158 for more information on short product names.

- One ball guide groove for diameter shafts 12 and 16 mm
- Two ball guide grooves for diameter shafts 20 mm and higher

Dimensions (mm)			Standard length	Torsional load moment		ings ²	Weight					
Ød	D ¹⁾	В	М	M ₁	N ₁	N_2	1	Mt	dyn. C	stat. C ₀	Linear bushing	
					+0.1		(mm)	(Nm)			(kg)	(kg/m)
12	22	32	M6x0.5	8.0	14.4	1.3	400	2.0	640	420	0.026	0.89
16	26	36	M6x0.5	8.0	16.4	1.3	400	3.3	780	530	0.032	1.57
20	32	45	M10x1	12.5	21.8	1.9	500	12.0	1,550	1,050	0.071	2.45
25	40	58	M10x1	12.5	25.8	1.9	500	24.0	3,030	2,180	0.130	3.80
30	47	68	M12x1	15.0	29.7	2.5	600	37.0	3,680	2,790	0.200	5.50
40	62	80	M12x1	15.0	37.2	2.5	600	86.0	6,320	4,350	0.380	9.80
50	75	100	M16x1.5	20.0	46.7	3.0	600	167.0	9,250	6,470	0.620	15.30

1) Recommended installation bore: DK6.


2) The load ratings indicated are minimal values as the load direction cannot always be clearly defined.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Wiper seal

Design

- Galvanized metal case
- Elastomer wiper seal

Dimensions (r	mm)		
Ød	D ³⁾	b	
		+0.3	
12	22	3	
16	26	3	
20	32	4	
25	40	4	
30	47	5	DEC
40	62	5	
50	75	6	

3 Outer diameter D is oversized by about 0.1 mm.

No additional securing is needed.

Linear sets with torque-resistant linear bushingsminum housing

Linear sets, R1098 2.. Type 1: One ball guide groove

Linear sets, R1098 5.. Type 2: Two ball guide grooves

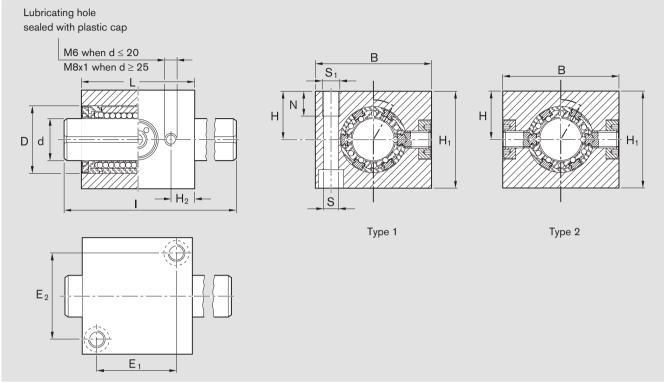
Design

- Lightweight precision housing (aluminum)
- Torque-resistant linear bushing
- Precision steel shaft with ball guide groove
- Torque-transmitting, hardened steel bearing plates come set to zero clearance
- Top wiper seals
- Stabilized version:
- see Linear sets, tandem
- Relubricatable

Shaft	Material num	ber for linear	set with shaft		
Ød		gth as per	Shaft length cut to size ¹	Customized shaft	
(mm)	table				
	LSADR1\	NV	LSADR1WV-K	LSADR1SPECIAL	
12	R1098 212 8	0	R1098 212 89	R1098 212 86	
16	R1098 216 8	0	R1098 216 89	R1098 216 86	
20	R1098 220 8	0	R1098 220 89	R1098 220 86	
25	R1098 225 8	0	R1098 225 89	R1098 225 86	
30	R1098 230 8	0	R1098 230 89	R1098 230 86	
40	R1098 240 8	0	R1098 240 89	R1098 240 86	
50	R1098 250 8	0	R1098 250 89	R1098 250 86	
		85 Shaf	t length 900 mm		

- 87 Shaft length 1,200 mm
- 88 Shaft length 2,000 mm

Shaft | Material number for linear set with shaft


Ø d (mm)	Standard length as per table	Shaft length cut to size ¹	Customized shaft		
	LSADR2WV	LSADR2WV-K	LSADR2SPECIAL		
20	R1098 520 80	R1098 520 89	R1098 520 86		
25	R1098 525 80	R1098 525 89	R1098 525 86		
30	R1098 530 80	R1098 530 89	R1098 530 86		
40	R1098 540 80	R1098 540 89	R1098 540 86		
50	R1098 550 80	R1098 550 89	R1098 550 86		
	85 Shaft	length 900 mm			

- 85 Shatt length 900 mm
- 87 Shaft length 1,200 mm
- 88 Shaft length 2,000 mm
- 1) Also available with hollow shaft for shaft diameters 25 and higher: R1098 ... 69 or with ISO 683-17/EN 10088 stainless steel solid shaft: R1098 ... 79.

Explanation of sample short product name

LS	А	DR	1	12	WV	1200
Linear set	Aluminum	Torque	One ball guide groove	Ø 12	Shaft included	1,200 mm

See page 159 for more information on short product names.

Dimens	sions (m	m)											Standard	Torsion	al load	Load rat	tings ³⁾	Weight	
Ød													length	momen	t M _t	(N)		Linear	Shaft
Type 1	Type 2	В	H ₁	H ¹⁾	H ₂	L	D	E ₁	E ₂	S ²	S ₁	N	I I		(Nm)	dyn. C	stat. C ₀	set	
				+0.013										Type 1	Type 2				
				-0.022									(mm)					(kg)	(kg/m)
12	-	42	35	18	8.5	40	22	28	30	5.3	M6	12	400	2.0	-	640	420	0.15	0.89
16	-	50	42	22	10.0	44	26	30	36	5.3	M6	12	400	3.3	-	780	530	0.22	1.57
20	20	60	50	25	11.0	55	32	39	44	6.6	M8	12	500	7.5	12	1,550	1,050	0.42	2.45
25	25	74	60	30	15.5	68	40	48	54	8.4	M10	15	500	15.0	24	3,030	2,180	0.70	3.80
30	30	84	70	35	16.5	80	47	58	62	10.5	M12	18	600	23.0	37	3,680	2,790	1.10	5.50
40	40	108	90	45	18.5	92	62	64	80	13.5	M16	20	600	53.0	86	6,320	4,350	2.10	9.80
50	50	130	105	50	22.5	114	75	84	100	13.5	M16	20	600	103.0	167	9,250	6,470	3.50	15.30

 Two or more linear sets on one shaft are machined to the same dimension H while installed. Dimension H is reduced by 0.5 mm.

2) ISO 4762-8.8 fastening bolts.

3) The load ratings indicated are minimal values as the load direction cannot always be clearly defined.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Note on lubrication: On-shaft lubrication via lubricating hole until lubricant comes out.

Linear sets with torque-resistant linear bushings, aluminum housing

Tandem

Linear sets, R1099 2.. Type 1: One ball guide groove

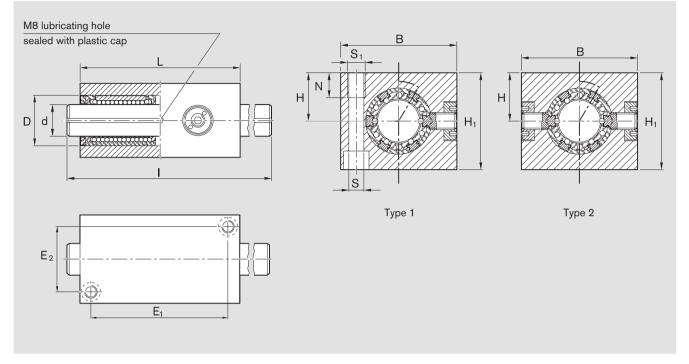
Linear sets, R1099 5.. Type 2: Two ball guide grooves

Design

- Lightweight precision tandem housing (aluminum)
- Two torque-resistant linear bushings
- Precision steel shaft with ball guide groove
- Torque-transmitting, hardened steel bearing plates come set to zero clearance
- Top wiper seals
- Stabilized version
- Relubricatable

Shaft	Material number for linear	r set with shaft			
Ød	Standard length as per	Shaft length cut to size ¹	Customized shaft		
(mm)	table				
	LSADR1TWV	LSADR1TWV-K	LSADR1TSPECIAL		
12	R1099 212 80	R1099 212 89	R1099 212 86		
16	R1099 216 80	R1099 216 89	R1099 216 86		
20	R1099 220 80	R1099 220 89	R1099 220 86		
25	R1099 225 80	R1099 225 89	R1099 225 86		
30	R1099 230 80	R1099 230 89	R1099 230 86		
40	R1099 240 80	R1099 240 89	R1099 240 86		
50	R1099 250 80	R1099 250 89	R1099 250 86		

- 85 Shatt length 900 mm
- -87 Shaft length 1,200 mm
- 88 Shaft length 2,000 mm


Shaft	Material number for linear	set with shaft							
Ød	Standard length as per	Shaft length cut to size ¹	Customized shaft						
(mm)	table								
	LSADR2TWV	LSADR2TWV-K	LSADR2TSPECIAL						
20	R1099 520 80	R1099 520 89	R1099 520 86						
25	R1099 525 80	R1099 525 89	R1099 525 86						
30	R1099 530 80	R1099 530 89	R1099 530 86						
40	R1099 540 80	R1099 540 89	R1099 540 86						
50	R1099 550 80	R1099 550 89	R1099 550 86						
85 Shaft length 900 mm									

- 87 Shaft length 1,200 mm
- 88 Shaft length 2,000 mm
- 1) Also available with hollow shaft for shaft diameters 25 and higher: R1099 ... 69 or with ISO 683-17/EN 10088 stainless steel solid shaft: R1099 ... 79.

Explanation of sample short product name

LS	А	DR	2	Т	20	WV	2000
Linear set	Aluminum	Torque	Two ball guide grooves	Tandem	Ø 20	Shaft included	2,000 mm

See page 159 for more information on short product names.

Dimens	sions (m	m)										Standard	Torsion	al load	Load rat	tings ³⁾	Weight	
	Ød											length	momen	t M _t	(N)		Linear	Shaft
Type 1	Type 2	В	H ₁	H ¹⁾	L	D	E ₁	E_2	S ²	S ₁	Ν	1		(Nm)	dyn. C	stat. C ₀	set	
				+0.013									Type 1	Type 2				
				-0.022								(mm)					(kg)	(kg/m)
12	-	42	35	18	76	22	64	30	5.3	M6	12	400	3.2	-	1,040	840	0.29	0.89
16	-	50	42	22	84	26	70	36	5.3	M6	12	400	5.5	-	1,260	1,060	0.43	1.57
20	20	60	50	25	104	32	88	44	6.6	M8	12	500	12.0	20	2,500	2,100	0.80	2.45
25	25	74	60	30	130	40	110	54	8.4	M10	15	500	24.0	40	4,900	4,360	1.50	3.80
30	30	84	70	35	152	47	130	62	10.5	M12	18	600	37.0	60	6,000	5,580	2.20	5.50
40	40	108	90	45	176	62	148	80	13.5	M16	20	600	86.0	140	10,200	8,700	4.00	9.80
50	50	130	105	50	224	75	194	100	13.5	M16	20	600	167.0	272	15,000	12,940	6.90	15.30

1) Two or more linear sets on one shaft are machined to the same dimension H while installed.

Dimension H is reduced by 0.5 mm.

2) ISO 4762-8.8 fastening bolts.

Load rating when both linear bushings are under equal load.
 The load ratings indicated are minimal values as the load direction cannot always be clearly defined.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Note on lubrication: On-shaft lubrication via lubricating hole until lubricant comes out.

Linear sets with torque-resistant linear bushings, steel housing

Linear sets, R1096 2.. Type 1: One ball guide groove

Linear sets, R1096 5.. Type 2: Two ball guide grooves

Design

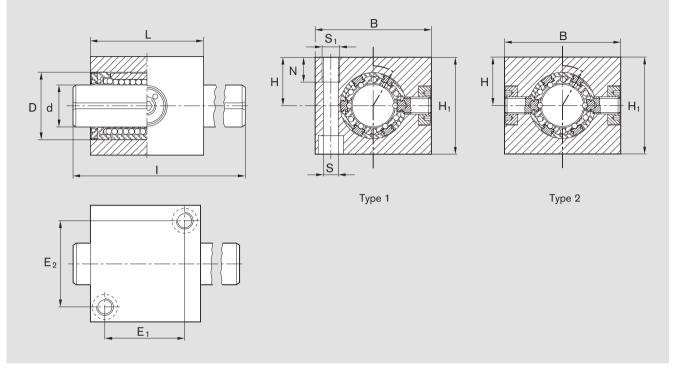
- Steel precision housing
- Torque-resistant linear bushing
- Precision steel shaft with ball guide groove
- Torque-transmitting, hardened steel bearing plates come set to zero clearance
- Top wiper seals
- Stabilized version: see Linear sets, tandem

Shaft	Material number for linea	r set with shaft			
Ø d (mm)	Standard length as per table	Shaft length cut to size ¹	Customized shaft		
	LSSDR1WV	LSSDR1WV-K	LSSDR1SPECIAL		
12	R1096 212 80	R1096 212 89	R1096 212 86		
16	R1096 216 80	R1096 216 89	R1096 216 86		
20	R1096 220 80	R1096 220 89	R1096 220 86		
25	R1096 225 80	R1096 225 89	R1096 225 86		
30	R1096 230 80	R1096 230 89	R1096 230 86		
40	R1096 240 80	R1096 240 89	R1096 240 86		
50	R1096 250 80	R1096 250 89	R1096 250 86		

- 85 Shaft length 900 mm
- 87 Shaft length 1,200 mm
- 88 Shaft length 2,000 mm

Shaft Material number for linear set with shaft

Ø d (mm)	Standard length as per table LSSDR2WV	Shaft length cut to size ¹ LSSDR2WV-K	Customized shaft LSSDR2SPECIAL
20	R1096 520 80	R1096 520 89	R1096 520 86
25	R1096 525 80	R1096 525 89	R1096 525 86
30	R1096 530 80	R1096 530 89	R1096 530 86
40	R1096 540 80	R1096 540 89	R1096 540 86
50	R1096 550 80	R1096 550 89	R1096 550 86
		length 900 mm length 1,200 mm	


88 Shaft length 2,000 mm

1) Also available with hollow shaft for shaft diameters 25 and higher: R1096 ... 69 or with ISO 683-17/EN 10088 stainless steel solid shaft: R1096 ... 79.

Explanation of sample short product name

LS	S	DR	2	20	WV	2000
Linear set	Steel	Torque	Two ball guide grooves	Ø 20	Shaft included	2,000 mm

See page 159 for more information on short product names.

Dimens	imensions (mm)											Standard Torsional load			Load ratings ³⁾		Weight	
	Ød											length	momen	t M _t			Linear	Shaft
Type 1	Type 2	В	H ₁	H ¹⁾	L	D	E ₁	E_2	S ²	S ₁	Ν	1		(Nm)	dyn. C	stat. C ₀	set	
				+0.013									Type 1	Type 2				
				-0.022								(mm)					(kg)	(kg/m)
12	-	42	35	18	40	22	28	30	5.3	M6	12	400	2.0	-	640	420	0.35	0.89
16	-	50	42	22	44	26	30	36	5.3	M6	12	400	3.3	-	780	530	0.55	1.57
20	20	60	50	25	55	32	39	44	6.6	M8	12	500	7.5	12	1,550	1,050	1.00	2.45
25	25	74	60	30	68	40	48	54	8.4	M10	15	500	15.0	24	3,030	2,180	1.50	3.80
30	30	84	70	35	80	47	58	62	10.5	M12	18	600	23.0	37	3,680	2,790	2.70	5.50
40	40	108	90	45	92	62	64	80	13.5	M16	20	600	53.0	86	6,320	4,350	5.00	9.80
50	50	130	105	50	114	75	84	100	13.5	M16	20	600	103.0	167	9,250	6,470	8.70	15.30

1) Two or more linear sets on one shaft are machined to the same dimension H while installed.

Dimension H is reduced by 0.5 mm.

2) ISO 4762-8.8 fastening bolts.

3) The load ratings indicated are minimal values as the load direction cannot always be clearly defined.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Linear sets with torque-resistant linear bushings, steel housing

Tandem

Linear sets, R1097 2.. Type 1: One ball guide groove

Linear sets, R1097 5.. Type 2: Two ball guide grooves


Design

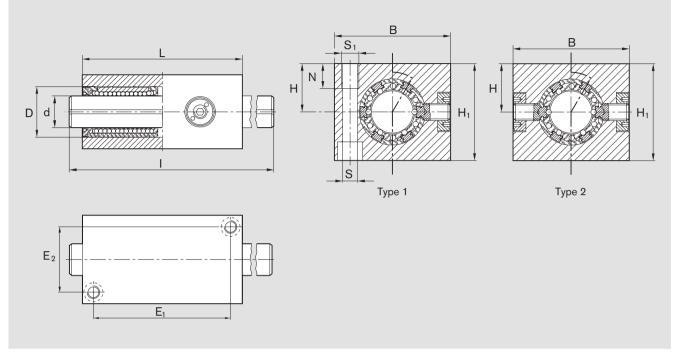
- Steel precision tandem housing
- Two torque-resistant linear bushings
 Precision steel shaft with ball guide
- groove
- Torque-transmitting, hardened steel bearing plates come set to zero clearance
- Top wiper seals
- Stabilized version

Shaft	Material number for linea	r set with shaft	
Ød	Standard length as per	Shaft length cut to size ¹	Customized shaft
(mm)	table		
	LSSDR1TWV	LSSDR1TWV-K	LSSDR1TSPECIAL
12	R1097 212 80	R1097 212 89	R1097 212 86
16	R1097 216 80	R1097 216 89	R1097 216 86
20	R1097 220 80	R1097 220 89	R1097 220 86
25	R1097 225 80	R1097 225 89	R1097 225 86
30	R1097 230 80	R1097 230 89	R1097 230 86
40	R1097 240 80	R1097 240 89	R1097 240 86
50	R1097 250 80	R1097 250 89	R1097 250 86

- -85 Shaft length 900 mm
- 87 Shaft length 1,200 mm
- 88 Shaft length 2,000 mm

Shaft Material number for linear set with shaft

Ø d (mm)		Shaft length cut to size ¹	Customized shaft
	LSSDR2TWV	LSSDR2TWV-K	LSSDR2TSPECIAL
20	R1097 520 80	R1097 520 89	R1097 520 86
25	R1097 525 80	R1097 525 89	R1097 525 86
30	R1097 530 80	R1097 530 89	R1097 530 86
40	R1097 540 80	R1097 540 89	R1097 540 86
50	R1097 550 80	R1097 550 89	R1097 550 86
		length 900 mm length 1,200 mm	


88 Shaft length 2,000 mm

1) Also available with hollow shaft for shaft diameters 25 and higher: R1097 ... 69 or with ISO 683-17/EN 10088 stainless steel solid shaft: R1097 ... 79.

Explanation of sample short product name

LS	S	DR	2	Т	20	WV	2000
Linear set	Steel	Torque	Two ball guide grooves	Tandem	Ø 20	Shaft included	2,000 mm

See page 159 for more information on short product names.

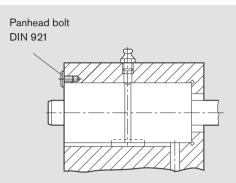
Dimens	Dimensions (mm)											Standard	Torsional load		Load ratings ³⁾		Weight	
	Ød											length	moment M _t (N)		(N)		Linear	Shaft
Type 1	Type 2	В	H ₁	H ¹⁾	L	D	E ₁	E ₂	S ²	S ₁	N	I		(Nm)	dyn. C	stat. C ₀	set	
				+0.013									Type 1	Type 2				
				-0.022								(mm)					(kg)	(kg/m)
12	-	42	35	18	76	22	64	30	5.3	M6	12	400	3.2	-	1,040	840	0.7	0.89
16	-	50	42	22	84	26	70	36	5.3	M6	12	400	5.5	-	1,260	1,060	1.0	1.57
20	20	60	50	25	104	32	88	44	6.6	M8	12	500	12.0	20	2,500	2,100	1.9	2.45
25	25	74	60	30	130	40	110	54	8.4	M10	15	500	24.0	40	4,900	4,360	3.5	3.80
30	30	84	70	35	152	47	130	62	10.5	M12	18	600	37.0	60	6,000	5,580	5.2	5.50
40	40	108	90	45	176	62	148	80	13.5	M16	20	600	86.0	140	10,200	8,700	9.8	9.80
50	50	130	105	50	224	75	194	100	13.5	M16	20	600	167.0	272	15,000	12,940	17.0	15.30

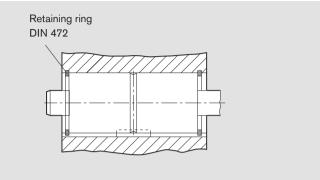
1) Two or more linear sets on one shaft are machined to the same dimension H while installed.

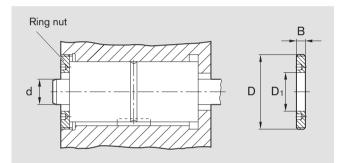
Dimension H is reduced by 0.5 mm.

2) ISO 4762-8.8 fastening bolts.

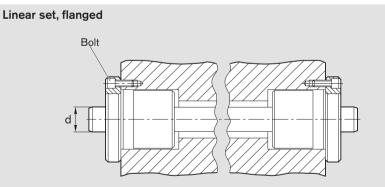
3) Load rating when both linear bushings are under equal load.


The load ratings indicated are minimal values as the load direction cannot always be clearly defined.


The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.


Linear sets with torque-resistant compact linear bushings

Installation


- Recommendations for installation, arranging the lubricating channels and holes, and securing
- Recommended mounting bore: D^{H6} (D^{J6})

Shaft	Ring nut											
Ød	Material number	Dimension	Dimensions (mm)									
(mm)		D	D ₁	В	(g)							
12	R1507 1 4003	M40x1.5	22	8	39.5							
16	R1507 2 4004	M45x1.5	28	8	55.0							
20	R1507 3 4005	M55x1.5	34	10	96.0							
25	R1507 4 4006	M70x1.5	42	12	216.0							
30	R1507 5 4007	M78x2	52	15	286.0							
40	R1507 6 4009	M92x2	65	16	385.0							
50	R1507 7 4011	M112x2	82	18	596.0							

_

Shaft	Bolt
Ø d (mm)	ISO 4762-8.8
12	M4x16
16	M4x16
20	M5x16
25	M6x20
30	M8x25
40	M8x25
50	M10x30

Lubrication

Initial Iubrication

Torque-resistant linear bushings do not have an initial lubrication. Grease linear bushings before use, see "Initial lubrication" Section "Lubrication" on page 21. eLINE linear bushings come with initial lubrication. Service life data is based on initial lubrication and relubricated linear bushings.

- Lubricating a linear set with a torque-resistant compact linear bushing: on-shaft via Ø = 3.9 lubricating hole until lubricant comes out.
- Lubricating a tandem linear set: on-shaft via recirculating lubricating groove in middle of outer diameter until lubricant comes out.
- Lubricating a flanged linear set: on-shaft via funnel-type lube nipple recessed on the front side until lubricant comes out.

Linear sets with torque-resistant compact linear bushings

Linear sets, R0721

Design

- Compact steel sleeve
- Torque-resistant compact linear bushing
- Precision steel shaft with ball guide groove
- Torque-transmitting, hardened steel bearing plates come set to zero clearance
- Top wiper seals
- Stabilized version: see Linear sets, tandem
- Keyway for torque transmission
- Relubricatable

_	One ball guide groove for diameter	
	shafts 12 and 16 mm	

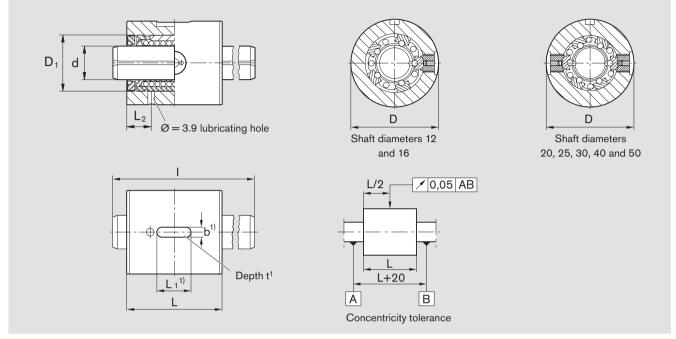
 Two ball guide grooves for diameter shafts 20 mm and higher

Shaft	Material number for linear set with shaft							
Ød	Standard length as per	Shaft length cut to size ¹	Customized shaft					
(mm)	table							
	LSHDRWV	LSHDRWV-K	LSHDRSPECIAL					
12	R0721 212 80	R0721 212 89	R0721 212 86					
16	R0721 216 80	R0721 216 89	R0721 216 86					
20	R0721 520 80	R0721 520 89	R0721 520 86					
25	R0721 525 80	R0721 525 89	R0721 525 86					
30	R0721 530 80	R0721 530 89	R0721 530 86					
40	R0721 540 80	R0721 540 89	R0721 540 86					
50	R0721 550 80	R0721 550 89	R0721 550 86					
	T							

85 Shaft length 900 mm

- 87 Shaft length 1,200 mm

- 88 Shaft length 2,000 mm


1) Also available with hollow shaft for shaft diameters 25 and higher: R0721 ... 69 or with ISO 683-17/EN 10088 stainless steel solid shaft: R0721 ... 79.

Explanation of sample short product name

LS	н	DR	2	20	WV	2000
Linear set	Compact linear bushing, sleeve design	Torque	Two ball guide grooves	Ø 20	Shaft included	2,000 mm

See page 159 for more information on short product names.

Dimensions

1) For fitting key A... DIN 6885.

Dimensions (mm)								Standard length	Torsional load	Load rati	ngs² (N)	Weight	
Ød	D	L	D ₁	L ₁	b	t	L_2	I	moment M _t	dyn. C	stat. C ₀	Linear set	Shaft
	h6	h11			P9			(mm)	(Nm)			(kg)	(kg/m)
12	32	40	22	14	5	3.0	11.0	400	2.0	640	420	0.16	0.89
16	36	44	26	16	5	3.0	12.0	400	3.3	780	530	0.20	1.57
20	48	55	32	20	5	3.0	14.0	500	12.0	1,550	1,050	0.50	2.45
25	56	68	40	25	6	3.5	15.5	500	24.0	3,030	2,180	0.80	3.80
30	65	80	47	28	6	3.5	16.5	600	37.0	3,680	2,790	1.20	5.50
40	80	92	62	32	8	4.0	18.5	600	86.0	6,320	4,350	1.80	9.80
50	100	114	75	40	8	4.0	22.5	600	167.0	9,250	6,470	3.70	15.30

2) The load ratings indicated are minimal values as the load direction cannot always be clearly defined.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Linear sets with torque-resistant compact linear bushings

Tandem

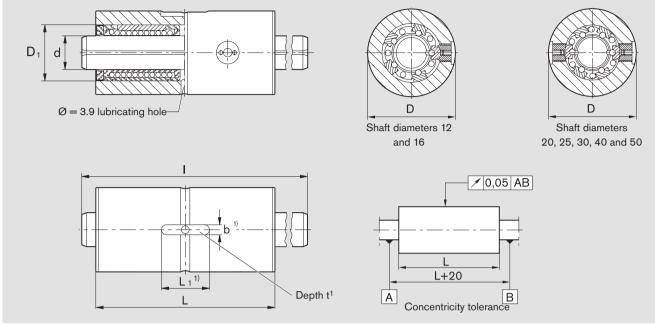
Linear sets, R0722

Design

- Compact steel sleeve
- Two torque-resistant compact linear bushings
- Precision steel shaft with ball guide groove
- Torque-transmitting, hardened steel bearing plates come set to zero clearance
- Top wiper seals
- Stabilized version
- Keyway for torque transmission
- Relubricatable

Shaft	Material number for linear	set with shaft			
Ød	Standard length as per	Shaft length cut to size ¹	Customized shaft		
(mm)	table				
	LSHDR.TWV	LSHDR.TWV-K	LSHDR.TSPECIAL		
12	R0722 212 80	R0722 212 89	R0722 212 86		
16	R0722 216 80	R0722 216 89	R0722 216 86		
20	R0722 520 80	R0722 520 89	R0722 520 86		
25	R0722 525 80	R0722 525 89	R0722 525 86		
30	R0722 530 80	R0722 530 89	R0722 530 86		
40	R0722 540 80	R0722 540 89	R0722 540 86		
50	R0722 550 80	R0722 550 89	R0722 550 86		
	85 Shaft	length 900 mm			

- 85 Shart length 900 mm
- 87 Shaft length 1,200 mm
- 88 Shaft length 2,000 mm
- 1) Also available with hollow shaft for shaft diameters 25 and higher: R0722 ... 69 or with ISO 683-17/EN 10088 stainless steel solid shaft: R0722 ... 79.


Explanation of sample short product name

LS	н	DR	2	т	20	WV	2000
Linear set	Compact linear bushing,	Torque	Two ball guide	Tandem	Ø 20	Shaft includ-	2,000 mm
	sleeve design		grooves			ed	

See page 159 for more information on short product names.

- One ball guide groove for diameter shafts 12 and 16 mm
- Two ball guide grooves for diameter shafts 20 mm and higher

Dimensions

¹⁾ For fitting key A... DIN 6885.

Dimen	isions (m	m)					Standard length	Torsional load	Load rati	ngs² (N)	Weight	
Ød	D	L	D ₁	L ₁	b	t	1	moment M _t	dyn. C	stat. C ₀	Linear set	Shaft
	h6	h11			P9		(mm)	(Nm)			(kg)	(kg/m)
12	32	76	22	20	5	3.0	400	3.2	1,040	840	0.32	0.89
16	36	84	26	22	5	3.0	400	5.5	1,260	1,060	0.40	1.57
20	48	104	32	28	5	3.0	500	20.0	2,500	2,100	0.95	2.45
25	56	130	40	36	6	3.5	500	40.0	4,900	4,360	1.50	3.80
30	65	152	47	40	6	3.5	600	60.0	6,000	5,580	2.30	5.50
40	80	176	62	45	8	4.0	600	140.0	10,200	8,700	3.50	9.80
50	100	224	75	63	8	4.0	600	272.0	15,000	12,940	7.30	15.30

2) Load rating when both linear bushings are under equal load.

The load ratings indicated are minimal values as the load direction cannot always be clearly defined.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Linear sets with torque-resistant compact linear bushings

Flanged

Linear sets, R0723

Design

- Steel flanged sleeve
- Torque-resistant compact linear bushing
- Precision steel shaft with ball guide groove
- Torque-transmitting, hardened steel bearing plates come set to zero clearance
- Top wiper seals
- Stabilized version:
 For installing two linear sets, see section "Installing linear sets with torque-resistant linear bushings"
- Relubricatable

-	One ball guide groove for diameter
	shafts 12 and 16 mm

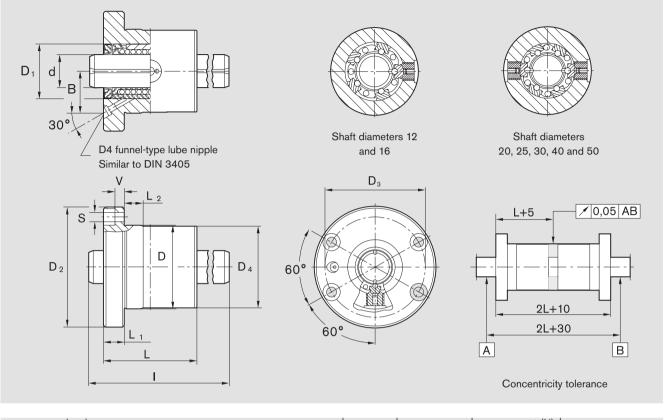
 Two ball guide grooves for diameter shafts 20 mm and higher

Shaft	Material number for linear	set with shaft								
Ø d (mm)	Standard length as per table	Shaft length cut to size ¹	Customized shaft							
	LSFDRWV	LSFDRWV-K	LSFDRSPECIAL							
12	R0723 212 80	R0723 212 89	R0723 212 86							
16	R0723 216 80	R0723 216 89	R0723 216 86							
20	R0723 520 80	R0723 520 89	R0723 520 86							
25	R0723 525 80	R0723 525 89	R0723 525 86							
30	R0723 530 80	R0723 530 89	R0723 530 86							
40	R0723 540 80	R0723 540 89	R0723 540 86							
50	R0723 550 80	R0723 550 89	R0723 550 86							
	The PE Shaft langth 000 mm									

- 85 Shaft length 900 mm

87 Shaft length 1,200 mm

88 Shaft length 2,000 mm


1) Also available with hollow shaft for shaft diameters 25 and higher: R0723 ... 69 or with ISO 683-17/EN 10088 stainless steel solid shaft: R0723 ... 79.

Explanation of sample short product name

LS	F	DR	2	20	WV	2000
Linear set	Compact linear bushing,	Torque	Two ball guide	Ø 20	Shaft included	2,000 mm
	flanged		grooves			

See page 159 for more information on short product names.

Dimensions

Dimer	Dimensions (mm)											Standard	Torsional load	Load rati	ngs² (N)	Weight	
Ød	D	D_4	D ₁	D_2	L	L ₁	L_2	D ₃	S ¹	v	В	length	moment M _t	dyn. C	stat. C ₀	Linear	Shaft
	h6	-0.1			h11	-0.2						I I				set	
		-0.3										(mm)	(Nm)			(kg)	(kg/m)
12	32	32	22	50	40	10	10	40	4.5	4.5	17.4	400	2.0	640	420	0.25	0.89
16	36	36	26	54	44	10	10	44	4.5	4.5	20.0	400	3.3	780	530	0.30	1.57
20	48	48	32	70	55	12	10	58	5.5	5.0	24.0	500	12.0	1,550	1,050	0.70	2.45
25	56	56	40	82	68	14	10	68	6.6	5.5	29.0	500	24.0	3,030	2,180	1.10	3.80
30	65	65	47	98	80	18	10	80	9.0	7.0	33.0	600	37.0	3,680	2,790	1.75	5.50
40	80	80	62	114	92	18	16	95	9.0	7.0	41.7	600	86.0	6,320	4,350	2.50	9.80
50	100	100	75	140	114	22	16	118	11.0	8.5	50.5	600	167.0	9,250	6,470	4.85	15.30

1) ISO 4762-8.8 fastening bolts.

2) The load ratings indicated are minimal values as the load direction cannot always be clearly defined.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Torque-resistant linear bushings with four ball guide grooves

Torque-resistant linear bushing, R0724 2 Four ball guide grooves

Design

- Hardened and machined outer sleeve
- POM ball retainer

- Balls made of rolling bearing steel
- Integrated wiper seals
- Fitting key for torque transmission
- Relubricatable

Size	Material number	Weight
	KBDR4-HDD	(kg)
4	R0724 204 00	0.0065
6	R0724 206 00	0.0190
8	R0724 208 00	0.0230
10	R0724 210 00	0.0540
13	R0724 213 00	0.0700
16	R0724 216 00	0.1500
20	R0724 220 00	0.2000
25	R0724 225 00	0.2200
30	R0724 230 00	0.3500
40	R0724 240 00	0.8100
50	R0724 250 00	1.5000

Explanation of sample short product name

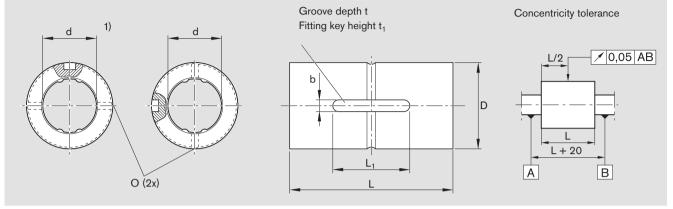
KB	DR	4	н	20	DD
Linear bushing	Torque	4 ball guide grooves	Cylindrical, sleeve design	Size 20	Integrated wiper seals

See page 158 for more information on short product names.

Precision steel shafts, R0724 0 Four ball guide grooves

For torque-resistant linear bushings R0724; R0725, flanged; R0726, miniature flanged; R0727, rotary flanged

Size	Material number for	solid shafts		Weight
	WVDR4	WVDR4K	WVDR4SPECIAL	
	Shaft length	Shaft length	Machined shaft	
	I _{max.}	To specification	To drawing	(kg/m)
4	R0724 004 02	R0724 004 89	R0724 004 86	0.10
6	R0724 006 02	R0724 006 89	R0724 006 86	0.21
8	R0724 008 02	R0724 008 89	R0724 008 86	0.38
10	R0724 010 02	R0724 010 89	R0724 010 86	0.60
13	R0724 013 02	R0724 013 89	R0724 013 86	1.00
16	R0724 016 02	R0724 016 89	R0724 016 86	1.50
20	R0724 020 02	R0724 020 89	R0724 020 86	2.00
25	R0724 025 02	R0724 025 89	R0724 025 86	3.10
30	R0724 030 02	R0724 030 89	R0724 030 86	4.80
40	R0724 040 02	R0724 040 89	R0724 040 86	8.60
50	R0724 050 02	R0724 050 89	R0724 050 86	13.10


Size	Material number f	for hollow shafts		Weight
	WODR4	WODR4K	WODR4SPECIAL	
	Shaft length	Shaft length	Machined shaft	
	I _{max.}	To specification	To drawing	(kg/m)
4	R0724 004 32	R0724 004 69	R0724 004 66	0.082
6	R0724 006 32	R0724 006 69	R0724 006 66	0.195
8	R0724 008 32	R0724 008 69	R0724 008 66	0.340
10	R0724 010 32	R0724 010 69	R0724 010 66	0.510
13	R0724 013 32	R0724 013 69	R0724 013 66	0.800
16	R0724 016 32	R0724 016 69	R0724 016 66	1.200

Explanation of sample short product name

WV	DR	4	20	600
Solid shaft	Torque	4 ball guide grooves	Size 20	600 mm long

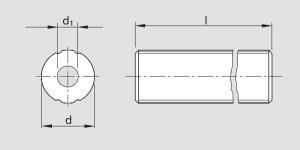
See page 161 for more information on short product names.

Dimensions of R0724 2

1) Sizes 4, 6, 8, 10

Size ²	Dimens	ions (mm)							Torsional lo	oad moment (Nm)	Load rating	gs ³⁾ (N)
	Ød	D h6	L	L ₁	0	t	t ₁	b	dyn. M _t	stat. M _{t0}	dyn. C	stat. C ₀
4	4.0	10	16 _{-0.2}	6.0	-	1.2	2.0	2.0	0.59	1.05	680	1,220
6	6.0	14	25 _{-0.2}	10.5	1.0	1.2	2.5	2.5	1.20	2.40	970	2,280
8	8.0	16	25 _{-0.2}	10.5	1.5	1.2	2.5	2.5	1.70	3.70	1,150	2,870
10	10.0	21	33 _{-0.2}	13.0	1.5	1.5	3.0	3.0	3.50	8.20	2,170	5,070
13	13.0	24	36_0.2	15.0	1.5	1.5	3.0	3.0	16.70	39.20	2,120	4,890
16	16.0	31	50 _{-0.2}	17.5	2.0	2.0	3.5	3.5	48.00	110.00	4,860	11,200
20	18.2	32	60 _{-0.2}	26.0	2.0	2.5	4.0	4.0	66.00	133.00	6,200	11,300
25	23.0	37	70 _{-0.3}	33.0	3.0	3.0	5.0	5.0	129.00	239.00	9,800	16,100
30	28.0	45	80 _{-0.3}	41.0	3.0	4.0	7.0	7.0	229.00	412.00	14,800	23,200
40	37.4	60	100 _{-0.3}	55.0	4.0	4.5	8.0	10.0	500.00	882.00	24,400	37,500
50	47.0	75	112 _{-0.3}	60.0	4.0	5.0	10.0	15.0	1,100.00	3,180.00	36,600	74,200

2) Shaft diameter varies


3) The load ratings indicated are minimal values as the load direction cannot always be clearly defined.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Note on installation:

Recommended housing bore tolerance: H6 or H7. Radial clearance: about \pm 5 $\mu m;$ Align the tracks and wiper seals when inserting the shaft and make sure they are not skewed.

Dimensions of R0724 0

Size ¹	Dimensions (mm))	
	Ø d h7	d ₁	Shaft length I _{max}
4	4.0	1.5	300
6	6.0	2.0	600
8	8.0	3.0	600
10	10.0	4.0	600
13	13.0	6.0	600
16	16.0	8.0	600
20	18.2	-	1,500
25	23.0	-	1,500
30	28.0	-	1,500
40	37.4	-	1,800
50	47.0	-	1,800

1) Shaft diameter varies

Torque-resistant linear bushings with four ball guide grooves

Torque-resistant linear bushing, R0725 Flanged, with four ball guide grooves

Torque-resistant linear bushing, R0726 Miniature flanged, with four ball guide grooves

Design

- Hardened and machined outer sleeve

POM ball retainer

- Balls made of rolling bearing steel

Size	Material number	Weight
	KBDR4-FDD	(kg)
6	R0725 206 00	0.037
8	R0725 208 00	0.042
10	R0725 210 00	0.094
13	R0725 213 00	0.100
16	R0725 216 00	0.200
20	R0725 220 00	0.220
25	R0725 225 00	0.320
30	R0725 230 00	0.510
40	R0725 240 00	1.150
50	R0725 250 00	2.100

Size	Material number	Weight
	KBDR4-FMDD	(kg)
6	R0726 206 00	0.029
8	R0726 208 00	0.035
10	R0726 210 00	0.075

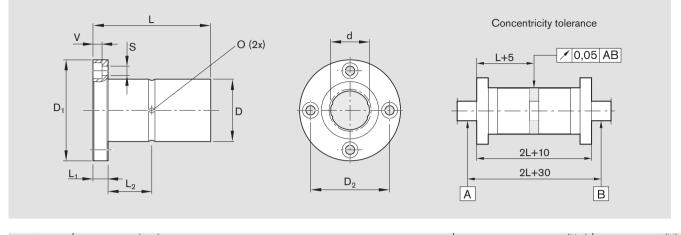
See "Precision steel shafts, R0724 0 Four ball guide grooves" for matching shafts.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Note on installation:

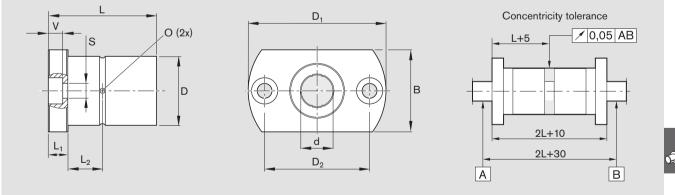
Recommended housing bore tolerance: H6 or H7. Radial clearance: about \pm 5 μ m. Align the tracks and wiper seals when inserting the shaft and make sure they are not skewed.

Explanation of sample short product name


KB	DR	4	F	20	DD
Linear bushing	Torque	4 ball guide grooves	Flanged version	Size 20	Integrated wiper seals
-		· · · · · · · · · · · · · · · · · · ·		·	

See page 158 for more information on short product names.

Integrated wiper seals


Relubricatable

Dimensions for R0725

Size ¹											Torsional load	moment (Nm)	Load ratings ² (N)	
	Ød	D	D ₁	D ₂	L	L ₁	L ₂	V	S ³⁾	0	dyn. M _t	stat. M _{t0}	dyn. C	stat. C ₀
		h6												
6	6.0	14	30	22	25_0.2	5	7.5	3.3	3.4	1.0	1.2	2.4	970	2,280
8	8.0	16	32	24	25 _{-0.2}	5	7.5	3.3	3.4	1.5	1.7	3.7	1,150	2,870
10	10.0	21	42	32	33_0.2	6	10.5	4.4	4.5	1.5	3.5	8.2	2,170	5,070
13	13.0	24	43	33	36_0.2	7	11.0	4.4	4.5	1.5	16.7	39.2	2,120	4,890
16	16.0	31	50	40	50 _{-0.2}	7	18.0	4.4	4.5	2.0	48.0	110.0	4,860	11,200
20	18.2	32	51	40	60 _{-0.2}	7	23.0	4.4	4.5	2.0	66.0	133.0	6,200	11,300
25	23.0	37	60	47	70 _{-0.3}	9	26.0	5.4	5.5	3.0	129.0	239.0	9,800	16,100
30	28.0	45	70	54	80 _{-0.3}	10	30.0	6.5	6.6	3.0	229.0	412.0	14,800	23,200
40	37.4	60	90	72	100 _{-0.3}	14	36.0	8.6	9.0	4.0	500.0	882.0	24,400	37,500
50	47.0	75	113	91	$112_{-0.3}$	16	40.0	11.0	11.0	4.0	1,100.0	3,180.0	36,600	74,200

Dimensions for R0726

Size ¹	Dimen	sions (r	nm)									Torsional load	moment (Nm)			n) Load ratings ² (N)				
	Ød	D	D ₁	D_2	В	L	L ₁	L ₂	V	S ³⁾	0	dyn. M _t	stat. M _{t0}	dyn. C	stat. C ₀					
		h6				-0.2														
6	6	14	30	22	18	25	5	7.5	3.3	3.4	1.0	1.2	2.4	970	2,280					
8	8	16	32	24	21	25	5	7.5	3.3	3.4	1.5	1.7	3.7	1,150	2,870					
10	10	21	42	32	25	33	6	10.5	4.4	4.5	1.5	3.5	8.2	2,170	5,070					

1) Shaft diameter varies

2) The load ratings indicated are minimal values as the load direction cannot always be clearly defined.

3) ISO 4762-8.8 fastening bolts

Torque-resistant linear bushings with four ball guide grooves

Torque-resistant linear bushing, R0727 Rotary flanged, with four ball guide grooves

Design

- Hardened and machined outer sleeve
- POM ball retainer
- Balls made of rolling bearing steel
- Integrated wiper seals
- Integrated cross-roller bearing have had an initial lubrication

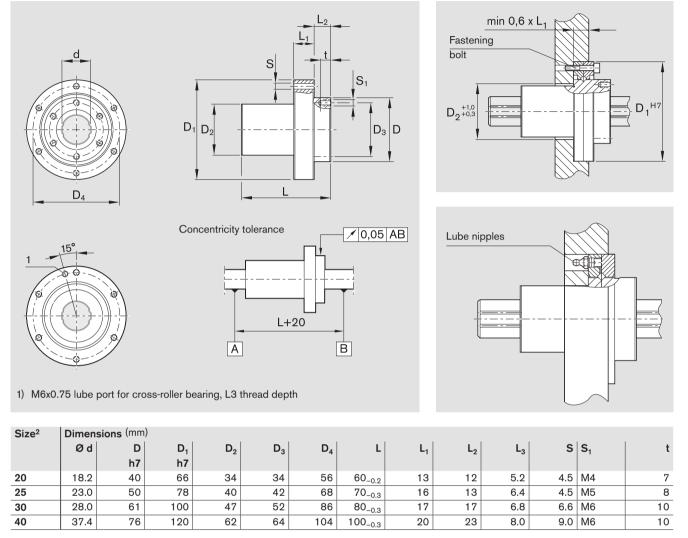
Size	Material number	Weight
	KBDR4-LRDD	(kg)
20	R0727 220 00	0.45
25	R0727 225 00	0.75
30	R0727 230 00	1.25
40	R0727 240 00	2.30

Note:

See "Precision steel shafts, R0724 0 Four ball guide grooves" for matching shafts.

Explanation of sample short product name

KB	DR	4	LR	20	DD
Linear bushing	Torque	4 ball guide grooves	Rotary bearing	Size 20	Integrated wiper seals


See page 158 for more information on short product names.

Note on lubrication

The linear bushing must get an initial lubrication and be removed from the shaft for relubrication. The cross-roller bearing comes with an initial lubrication and can be relubricated via the lube port.

Dimensions

Recommended installation

Size ²	Torque-resi	stant linear bushi	ing	/	Cross-rolle	r bearing		Tightening torque ⁴⁾	
	Torsional load moment (Nm)		Load rating	s ³⁾ (N)	Load rating	js (N)	Speed limit	Fastening bolt	
	dyn. M _t	stat. M _{to}	dyn. C	stat. C ₀	dyn. C	stat. C ₀	(rpm)		(Nm)
20	66	133	6,200	11,300	5,900	7,350	1,200	M4	3.9
25	129	239	9,800	16,100	9,110	11,500	1,000	M4	3.9
30	229	412	14,800	23,200	13,200	18,000	800	M6	12.7
40	500	882	24,400	37,500	22,800	32,300	600	M8	29.4

2) Shaft diameter varies

3) The load ratings indicated are minimal values as the orientation and direction of load cannot always be clearly defined.

4) Tightening torque at friction factor 0.125

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Note on installation:

Radial clearance: about \pm 5 μ m

Align the tracks and wiper seals when inserting the shaft and make sure they are not skewed.

 \triangle Do not loosen the flange connection (cross-roller bearing). Tighten the fastening bolts in phases until the table value is reached.

Linear bushings for combined linear and rotary motion

Product overview

The benefits

- Linear bushings with deep-groove ball bearing or needle bearing
- Precise guiding at high load rating
- High speed and low friction
- For linear applications with additional rotation
- For grip and swivel functions
- For winding applications

Explanation of short product name

Sample linear bushing:

Linear bushing for combined linear and rotary motion (rotation) KBRON-30-DD

Definition of codes			KB RO N 30 DD
Туре	Linear bushing	= KB	
Series	Combined linear and rotary motion (rotation)	=RO	
Form	Deep-groove ball bearing (series 618)	= R	
	Deep-groove ball bearing, shield (series 60)	= RD	
	Needle bearing	= N	
Shaft diameter		= 30	
Seals	With two seals	= DD	
	1 seal	= D	
	No seals	=	

Linear bushings for combined linear and rotary motion

Linear bushings for combined linear and rotary motion, R0663 Series 618 deep-groove ball bearing

Linear bushings for combined linear and rotary motion, R0664 Series 60 deep-groove ball bearing Design

 Maintenance-free sealed shields (series 60, prelubricated)

Shaft diameters 12 to 40

- Segmental linear bushing
- Steel sleeve

Shaft

- Top wiper seals
- Pressed-on deep-groove ball bearing

Material number

Shaft diameters 5, 8, 50, 60 and 80

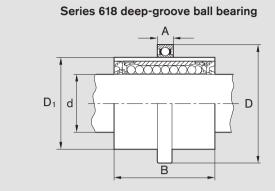
- Standard linear bushing
- Integrated wiper seals
- Pressed-on deep-groove ball bearing

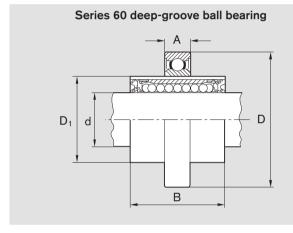
Weight

(Shaft diameters 5, 8, 50, 60 and 80)

Ød	with series 618 deep-groove ball bearing	
(mm)	KBRORDD	(kg)
5	R0663 205 00	0.02
8	R0663 208 00	0.06
12	R0663 212 00	0.08
16	R0663 216 00	0.11
20	R0663 220 00	0.15
25	R0663 225 00	0.17
30	R0663 230 00	0.35
40	R0663 240 00	0.49
50	R0663 250 00	1.29
60	R0663 260 00	2.39
80	R0663 280 00	5.35

Series 60 deep-groove ball bearing


Shaft	Material number	Weight
Ø	d with series 60 deep-groove ball bearing	
(mn	n) KBRORDDD	(kg)
	5 R0664 205 00	0.03
	8 R0664 208 00	0.11
1	2 R0664 212 00	0.14
1	6 R0664 216 00	0.20
2	0 R0664 220 00	0.27
2	5 R0664 225 00	0.32
3	0 R0664 230 00	0.56
4	0 R0664 240 00	0.87
5	0 R0664 250 00	1.78
6	0 R0664 260 00	3.26


Explanation of sample short product name

KB	RO	R	20	DD
Linear bushing	Combined linear and rotary motion (rotation)	Deep-groove ball bearing	Ø 20	With two seals

See page 192 for more information on short product names.

Dimensions

Dimens	ions (mn	n)	Load ratings	5 ³⁾ (N)		
Ød	D	D ₁	A	В	С	C ₀
5	21	12 ¹⁾	5	22	180	140
8 ²⁾	32	20	7	25	320	240
12	37	25	7	30	480	420
16	42	30	7	34	720	620
20	47	35	7	38	1,020	870
25	52	40	7	45	1,630	1,360
30	65	50	7	54	2,390	1,960
40	78	60	10	66	3,870	3,270
50	95	75 ¹⁾	10	100	8,260	6,470
60	115	90 ¹⁾	13	125	11,500	9,160
80	150	120 ¹⁾	16	165	21,000	16,300

Dimens	ions (mn	Load ratings	s ³⁾ (N)			
Ød	D	D ₁	Α	В	С	C _o
5	28	12 ¹⁾	8	22	180	140
8 ²⁾	42	20	12	25	320	240
12	47	25	12	30	480	420
16	55	30	13	34	720	620
20	62	35	14	38	1,020	870
25	68	40	15	45	1,630	1,360
30	80	50	16	54	2,390	1,960
40	95	60	18	66	3,870	3,270
50	115	75 ¹⁾	20	100	8,260	6,470
60	140	90 ¹⁾	24	125	11,500	9,160

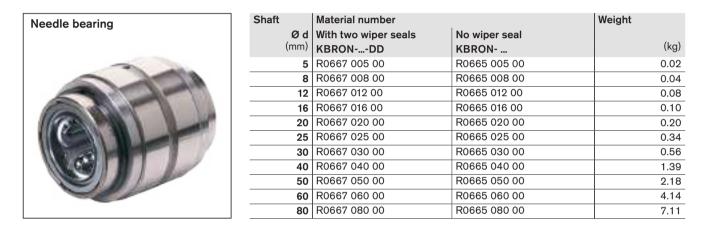
1) Oversized.

2) Spacer sleeve between bearing and standard linear bushing.

3) The load ratings indicated are minimal values as the orientation and load direction cannot be clearly defined.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Seal:	The linear bushings are sealed on both side Series R0663: Please request our table TE bearing with shaft seal ring Series R0664: The deep-groove ball bearin and are maintenance-free fe	306-060-00 for sealing deep-groove ball s. ng are sealed on both sides with shields				
Recommended installation tolerances	Series R0663 and R0664: Shaft: d _{h6} Housing bore D ^{K6} or D ^{K7} Another tolerance zone can be chosen in special instances (see Rolling element manufacturer's installation recommendations).					
Operating temperatures	-10 °C to 80 °C					
Initial lubrication	Linear bushings for combined linear and rotary motion do not have an initial lubrication. Grease linear bushings be- fore use, see "Initial lubrication" Section "Lubrication" on page 21. Service life data is based on initial lubri- cation and relubricated linear bushings.	Fett Grase Grasso				

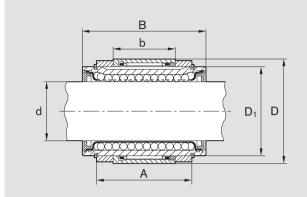

Linear bushings for combined linear and rotary motion

Linear bushings for combined linear and rotary motion, R0665 Needle bearing, no wiper seal

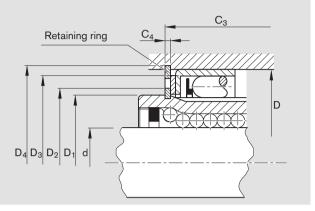
Linear bushings for combined linear and rotary motion, R0667 Needle bearing, no wiper seal

Design

- Standard linear bushing (closed)
- Needle bearing
- Steel intermediate rings
- Retaining rings



Explanation of sample short product name


KB	RO	Ν	20	DD
Linear bushing	Combined linear and rotary motion (rotation)	Needle bearing	Ø 20	With two seals

See page 192 for more information on short product names.

Dimensions

Recommended installation

Dimens	ions (mm	ı)									Retaining ring ³⁾	Load rating	gs ⁴⁾ (N)
Ød	D	D ₁	b	Α	В	D_2	D_3	D_4	C ₃	C ₄		C	C ₀
								H11	H12	H13			
5	19	12.0	12.0	12.0	22	13.8	-	19.5	14.6	1.3	SB19	180	140
8	24	16.0	13.0	14.1	25	19.3	23	24.8	16.5	1.3	SB24	320	240
12	30	22.0	16.0	20.0	32	24.2	28	31.0	23.2	1.6	SB30	420	280
16	34	26.0	20.0	22.1	36	28.4	32	35.0	25.3	1.6	SB34	580	440
20	42	32.0	20.0	28.0	45	35.1	40	43.2	31.2	1.6	SB42	1,170	860
25	50	40.0	30.0	40.0	58	43.1	48	51.2	43.2	1.6	SB50	2,080	1,560
30	57	47.0	30.0	48.0	68	49.1	55	58.5	51.2	1.6	SB57	2,820	2,230
40 ¹⁾	80	62.2 ²⁾	56.0	56.0	80	74.2	-	81.8	60.2	2.2	SB80	5,170	3,810
50 ¹⁾	92	75.0	70.0	73.1	100	80.6	90	94.0	78.3	2.7	SB92	8,260	6,470
60 ¹⁾	110	90.0	70.0	95.0	125	95.0	108	112.3	100.2	2.7	SB110	11,500	9,160
80 ¹⁾	140	120.0	81.6	125.0	165	128.0	138	142.6	130.2	2.7	SB140	21,000	16,300

1) Contrary to the figure, these sizes come with two needle bearings.

2) The body is a special version of the closed standard linear bushing.

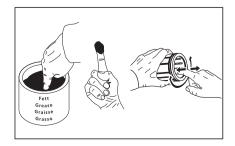
3) Seeger-Orbis GmbH

4) The load ratings indicated are minimal values as the orientation and load direction cannot be clearly defined.

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1.26.

Recommended installation tolerances:

- Shaft d_{h6}
- Housing bore D^{K6} or D^{K7}
- Another tolerance zone can be chosen in special instances (see Rolling element manufacturer's installation recommendations).
- See recommended installation for axial securing of the needle bearing in the housing.
- Installing the needle bearing in the housing without additional axial securing is sufficient for numerous applications.
- Needle bearing with axial play on standard linear bushing

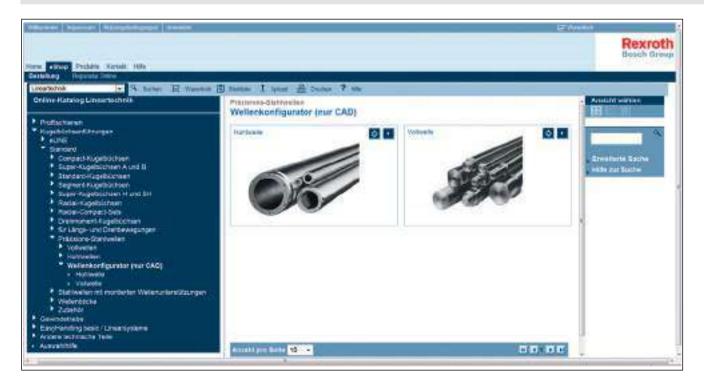

Operating temperatures

-10 °C to 80 °C

Initial lubrication

Linear bushings for combined linear and rotary motion do not have an initial lubrication. Grease linear bushings before use, see "Initial lubrication" Section "Lubrication" on page 21.

Service life data is based on initial lubrication and relubricated linear bushings.



Precision steel shafts and shaft end machining

Product overview

The benefits

- Induction-hardened and polished
- Solid or hollow shafts
- Various tolerances
- Heat-treated, stainless or hard chrome-plated steel
- Cut to size
- Chamfered to protect linear bushing seals
- Fully machined to customer drawings
- Use as guide shafts for linear bushings
- Use as rollers, pistons and axes

Use the shaft configuration tool to request machined shafts. www.boschrexroth.com/shaft-configuration

Overview

Dimensions

Shaft	Part numbers for solid shafts								
Ød			Max.			Max.		Max.	
	Heat-treated C	f53	usable	e X46Cr13		usable X90CrMoV18			usable
	h6 ¹⁾	h7 ¹⁾	Length	h6 ¹⁾	h7 ¹⁾	Length	h6 ¹⁾	h7 ¹⁾	Length
(mm)			(mm)			(mm)			(mm)
3	R1000 003 00	-	400	-	-		R1000 003 20	-	400
4	-	-	-	R1000 004 30	R1000 004 31	3,450	-	-	-
5	R1000 005 00	R1000 005 01	3,900	R1000 005 30	R1000 005 31	3,450	-	-	-
6	R1000 006 00	R1000 006 01	5,650	R1000 006 30	R1000 006 31	3,450	-	-	-
8	R1000 008 00	R1000 008 01	5,900	R1000 008 30	R1000 008 31	5,900	-	-	-
10	R1000 010 00	R1000 010 01	5,900	R1000 010 30	R1000 010 31	3,450	-	-	-
12	R1000 012 00	R1000 012 01	5,900	R1000 012 30	R1000 012 31	5,900	R1000 012 20	R1000 012 21	5,900
14	R1000 014 00	R1000 014 01	5,900	R1000 014 30	R1000 014 31	5,900	-	-	-
15	R1000 015 00	R1000 015 01	5,900	-	-	-	-	-	-
16	R1000 016 00	R1000 016 01	5,900	R1000 016 30	R1000 016 31	5,900	R1000 016 20	R1000 016 21	5,900
18	R1000 018 00	R1000 018 01	5,900	-	-	-	-	-	-
20	R1000 020 00	R1000 020 01	5,900	R1000 020 30	R1000 020 31	5,900	R1000 020 20	R1000 020 21	5,900
22	R1000 022 00	R1000 022 01	5,900	-	-	-	-	-	-
24	R1000 024 00	R1000 024 01	5,900	-	-	-	-	-	-
25	R1000 025 00	R1000 025 01	5,900	R1000 025 30	R1000 025 31	5,900	R1000 025 20	R1000 025 21	5,900
30	R1000 030 00	R1000 030 01	5,900	R1000 030 30	R1000 030 31	5,900	R1000 030 20	R1000 030 21	5,900
32	R1000 032 00	R1000 032 01	5,900	-	-	-	-	-	-
35	R1000 035 00	R1000 035 01	5,900	-	-	-	-	-	-
38	R1000 038 00	R1000 038 01	5,900	-	-	-	-	-	-
40	R1000 040 00	R1000 040 01	5,900	R1000 040 30	R1000 040 31	5,900	R1000 040 20	R1000 040 21	5,900
45	R1000 045 00	R1000 045 01	5,900	-	-	-	-	-	-
50	R1000 050 00	R1000 050 01	5,900	R1000 050 30	R1000 050 31	5,900	R1000 050 20	R1000 050 21	5,900
55	R1000 055 00	R1000 055 01	5,900	-	-	-	-	-	-
60	R1000 060 00	R1000 060 01	5,900	R1000 060 30	R1000 060 31	5,900	R1000 060 20	R1000 060 21	5,900
70	R1000 070 00	R1000 070 01	5,900	-	-	-	_	-	-
80	R1000 080 00	R1000 080 01	5,900	R1000 080 30	R1000 080 31	5,900	R1000 080 20	R1000 080 21	5,900
100	R1000 100 00	R1000 100 01	5,900	-	-	-	-	-	-
110	R1000 110 00	R1000 110 01	5,900	-	-	-	-	-	-

1) Other tolerances upon request

Shaft Ø d	Part numbers f Hard chrome-p		fts		Part numbers for hollow shafts Heat-treated C60; Hard chrome-plated Cf53					
		Max. usable		Max. usable	size Ø 8, Ø 10,		Max. usable		Max. usable	
(mm)	h6	Length (mm)	h7	Length (mm)	h6	h7	Length	h7	Length	
(1111)	_	(((((((((((((((((((((((((((((((((((((((_	(((((((((((((((((((((((((((((((((((((((_	-	_	_		
4	_				_			_		
5	_		_		_	_		_		
6	_		_		_	_	_	_		
8		_	_		R1001 008 10	_	1,000			
10	_		_		R1001 010 10		1,000			
10	- R1000 012 60	5.350		5.350	R1001 010 10	- R1001 012 11	5,900			
12		5,350		5,350	1(1001 012 10		5,900			
14	K1000 014 00		K1000 014 01	5,350	-	-	-	-		
10	- R1000 016 60	6.350	– R1000 016 61	6.350	R1001 016 10	- R1001 016 11	2,000	_		
18	K1000 010 00	6,350	-	0,300	-	KIUUT UIU II	2,000	_		
20	- R1000 020 60	6,450		6,450	- R1001 020 10	- R1001 020 11	5,900			
20	-	6,430	K1000 020 01	6,430	K1001 020 10	-	5,900	_		
22	-	-	-	-	-	-		-		
24	- R1000 025 60	6 950	- R1000 025 61	6.850	- R1001 025 10	- R1001 025 11		- R1001 025 41	5,900	
30	R1000 025 60	6,850		6,850	R1001 025 10	R1001 025 11		R1001 025 41	5,900	
30	K1000 030 00	.,	K1000 030 01	0,000	-	-	5,900	K1001 030 41	5,900	
32	_	-	_	-	_	_	-	_	-	
35	-	-	_	-	-	_	-	_		
	- R1000 040 60	-		-	- R1001 040 10	- R1001 040 11	-		-	
40 45	R1000 040 60	6,850	R1000 040 01	6,850	R1001 040 10	R1001 040 11	5,900	R1001 040 41	5,900	
45 50	- R1000 050 60	- 6.050	- R1000 050 61	- 6.050	- R1001 050 10	- R1001 050 11		- R1001 050 41		
50	R 1000 000 60	6,850	-	6,850	-	-	5,900	-	5,900	
	- R1000 060 60	-		-	- R1001 060 10	- R1001 060 11	- E 000		- F 000	
60 70	R 1000 000 60	6,850	- R 1000 060 61	6,850		-	5,900	R1001 060 41	5,900	
	- D1000.000.00	-		-	-		-	- D1001.000.44	-	
80	R1000 080 60	6,850	R1000 080 61	6,850	R1001 080 10	R1001 080 11	5,900	R1001 080 41	5,900	
100	-	-	-	-	-	-	-	-	-	
110	-	-	-	-	-	-		-		

Ordering information

Heat-treated solid steel shafts

As part of a linear guide, the role of the shaft places strict requirements on the materials used.

We offer the ideal shaft material for any diameter range.

Extremely consistent surface hardness and hardness depth combine with outstanding purity, consistent structure and balanced grading for extraordinarily long service life under rolling loads.

Available diameters (mm)	Ø d (mm)	Lengths (m)
3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22,	3	0.4
24, 25, 30, 32, 35, 38, 40, 45, 50, 55, 60,	5 and 6	5.8
70, 80, 100, 110	8 and higher	6.1

Solid shafts with shaft diameters 20 mm to 8 m in length available upon request. Sections combine for longer overall lengths.

Linear bushings roll over seams with ease.

Materials	Hardness	
Cf53	Min. 60 HRC	Ordering example
		Solid shaft, $\emptyset = 25$, h7, heat-treated
Material number		steel, 460 mm long
h6 tolerance	R1000 xxx 00	Material number:
h7 tolerance	R1000 xxx 01	R1000 025 01. 460 mm
xxx = diameter in m	m	

ISO 683-17/EN 10088 stainless steel solid shafts

The right choice for applications where corrosion resistance and cleanliness are critical, e.g., in the food industry, semiconductor production and medical equipment. X 90 CrMoV 18 is more resistant to lactic acid than X 46 Cr 13.

Materials	Available diame	eters (r	mm)
X 46 Cr13		4, 5	6, 6, 8, 10, 12, 14, 16, 20, 25, 30, 40, 50, 60, 80
X 90 CrMoV 18			3, 12, 16, 20, 25, 30, 40, 50, 60, 80
Ø d (mm)	Lengths (m)		Sections combine for longer overall
3		0.4	lengths.
4 - 10		3.6	Linear bushings roll over seams with
12 - 80		6.1	ease.
Materials	Hardness		
X 46 Cr 13	Min. 54 HRC		
X 90 CrMoV 18	Min. 55 HRC		
Material number for	X 46 Cr 13		Ordering example:
h6 tolerance	R1000 0xx 30		Solid shaft, $\emptyset = 16$, h6, stainless steel X
h7 tolerance	R1000 0xx 31		46 Cr 13, 350 mm long
			Material number:
Material number for X 90 CrMoV 18			R1000 016 30, 350 mm
h6 tolerance	R1000 0xx 20		
h7 tolerance	R1000 0xx 21		
xx = diameter in mm			

Materials

		Code	Material no.
Heat-treated steel	Solid shaft	Cf53	1.1213
	Hollow shaft	C60	1.0601
ISO 683-17/EN 10088 stainless steel		X 46 Cr 13	1.4034
		X 90 CrMoV 18	1.4112

Solid shafts, hard chrome-plated

Optimal shaft surface corrosion protection on outer diameter.

Available diameters (mm)

12, 14,	16, 20, 25, 30, 40, 50, 60, 80	
		-

Q	ð d (mm)	Lengths (m)
	12, 14	5.35
	16	6.35
_	20 - 80	6.85

Sections combine for longer overall lengths. Linear bushings roll over seams with ease.

Materi	als
Cf53, 0	C60

waterials	riaruness
Cf53, C60	Min. 60 HRC (about 700 HV)
Chrome plating (about 10 μ m thick)	About 1,000 HV

Hardnaa

Material number

h6 tolerance	R1000 0xx 60
h7 tolerance	R1000 0xx 61
xx = diameter in mm	

Ordering example: Solid shaft, $\emptyset = 30$, h7, hard chrome-plated, 480 mm long Material number: R1000 030 61, 480 mm

Heat-treated hollow steel shafts

Hollow shafts allow for electrical wiring, or liquid or gaseous media. Hollow shafts are also often used to save weight. The material is seamlessly rolled. The inner diameters are unmachined.

Available diameters (mm)		
Outer	Inner (approx.)	
8		3.0
10		4.0
12		4.0
16		8.0
20		14.0
25		14.0
30		19.0
40		26.5
50		29.6
60		36.5
80		57.4

	Max. lengths (m)	
8, 10	1.0	С
16	2.	5
12 and 20 - 80	6.	1
		_

Materials	Hardness
C60	Min. 60 HRC

Material number						
h6 tolerance	R1001 xxx 10					
h7 tolerance	R1001 xxx 11					

Ordering example: Hollow shaft, $\emptyset = 80$, h7, 3,600 mm long Material number: R1001 080 11, 3600 mm

xxx = outer diameter in mm

Hollow shafts, hard chrome-plated

Hollow shafts are hard chrome-plated on the outer diameter. Max. length: 6.1 m

Available	Available diameters (mm)								
Outer	Inner (approx.)								
25		14.0							
30		19.0							
40		26.5							
50		29.6							
60		36.5							
80		57.4							

Material number R1001 0xx 41

h7 tolerance

xx = outer diameter in mm

Materials Hardness C60 Min. 60 HRC (about 700 HV) Chrome plating About 1,000 HV About 10 μm thick

Ordering example:

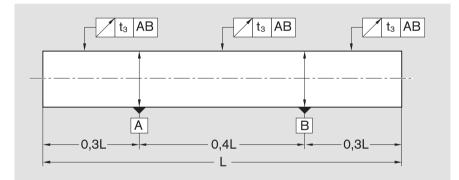
Hollow shaft, $\emptyset = 40$, h7, hard chrome-plated, 2000 mm long Material number: R1001 040 41, 2000 mm

Linear bushings | R999000488 (2015-02)

Precision steel shafts

Technical data

Dimensional accuracy and tolerance zones

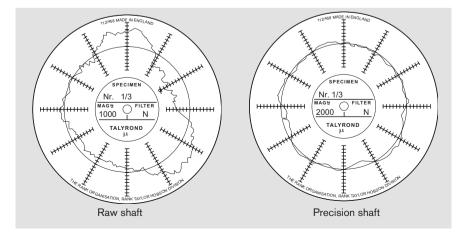

The diameters of the precision steel shafts come in h6 and h7 tolerance zones. The adjacent table shows information on dimensional accuracy. The diameter tolerance of annealed shaft cross-sections vary slightly from the specified tolerance zone.

	t_1	<u> </u>
d		
<u> </u>		

Nominal size ranges d	(mm)	Over	1	3	6	10	18	30	50	80
		Up to	3	6	10	18	30	50	80	120
Diameter tolerance	(µm)	h6	0	0	0	0	0	0	0	0
			-6	-8	-9	-11	-13	-16	-19	-22
		h7	0	0	0	0	0	0	0	0
			-10	-12	-15	-18	-21	-25	-30	-35
Roundness tolerance t ₁	(µm)	h6	3	4	4	5	6	7	8	10
		h7	4	5	6	8	9	11	13	15
Cylindricity t ₂ ¹⁾	(µm)	h6	4	5	6	8	9	11	13	15
		h7	6	8	9	11	13	16	19	22
Straightness t ₃ ²⁾	(μm/m)		150	150	120	100	100	100	100	100
Surface roughness (Ra)	(µm)		0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32

1) Differences in diameter

2) The smallest possible value is 40 μm for lengths under 1 m. Straightness is measured based on ISO 13012.



Straightness based on ISO 13012

The measuring points are evenly distributed between the support points and the shaft sections protruding past them. More supports are used accordingly for long, thin shafts. Straightness is half of the gauge measurement when turning the shaft 360°.

Roundness

The drawing shows the roundness of a raw shaft compared to a precision steel shaft.

Shaft hardness

The outer zone of the shaft is induction-hardened. Depending on the shaft diameter, the depth of hardness ranges from 0.4 to 2.4 mm. Linear and transverse surface hardness and depth of hardness are highly consistent. This ensures high dimensional consistency and long service life. The adjacent figure shows the cross-section and longitudinal section of a hardened and polished precision steel shaft. The hardened surface zone is

Shaft Ø d (mm)	Over	1	3	10	18	30	50	80
	То	3	10	18	30	50	80	120
Depth of hardness (mm)	Min.	0.4	0.4	0.6	0.9	1.5	2.2	2.4

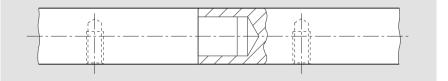
Min. surface hardness

made visible by caustic etching.

Materials	Hardness
Cf53, C60	HRC 60
X 46 Cr13	HRC 54
X 90 CrMoV 18	HRC 55

Technical data

Mill-cut lengths

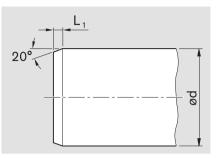

Shaft design	Diameter	Mill-cut length	Ends not true to size ¹⁾
	(m)	(m)	Length (mm) (one side)
Solid shafts ²⁾	3	0.4	
	5, 6	5.8	75
	8 and higher	6.1	75
Hollow shafts	8, 10	1.0	
	16	2.0	
	12, 20 and higher	6.1	75
Stainless steel solid	3	0.4	
shafts	4 to 10	3.6	75
	12 and higher	6.1	75

1) Regarding geometry and hardness

2) Solid shafts with shaft diameters 20 mm to 8 m in length available upon request.

Interconnecting shafts

We also provide interconnectable steel shafts when more than the mill-cut length is needed. One shaft then comes with a spigot, the next with a matching recess (see figure). The interconnected shaft must be supported throughout or at intervals, though generally at the seas (see Section "Shaft support rails"). The shafts must be under axial tension when fastening the shaft support rails so no gaps form at the seams. Linear bushings roll over seams with ease.



Chamfering

Machining

When used as round guides for linear bushings, the ends of steel shafts must be chamfered so the ball retainers/wiper seals are not damaged when the linear bushings are pressed onto the shafts. The figure and table show the chamfering dimensions.

Linear bushings with wiper seals cannot be pressed over sharp edges on the shaft (e.g., retaining ring grooves) since the sealing lips will be damaged.

Shaft Ø d	(mm)	3	4	5	8	10	12	14	16	20	25	30	40	50	60	80
Length of	(mm)	1	1	1.5	1.5	1.5	2	2	2	2	2	2	3	3	3	3
chamfers L ₁																

Hardened and polished steel shafts are available in mill-cut lengths. These can be cut to size and machined to include:

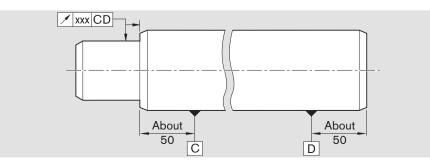
- Spigots
- Female and male threads
- Counterbores

- Radial and axial holes
- Grooves
- Other machining

Unmachined, cut-to-size shafts come chamfered for accident prevention when not otherwise ordered.

Annealing machined sections

Length tolerance for cut-to-size shafts


Annealing may be necessary when machining shafts due to the hardened outer zone (minor change in size possible).

Dimensions (mm)	
Length	Tolerance
up to 400	±0.5
over 400	±0.8
up to 1,000	
over 1,000	±1.2
up to 2,000	
over 2,000	±2.0
up to 4,000	
over 4,000	±3.0
up to 6,000	
over 6,000	±3.5
up to 8,000	

Steel shafts with smaller length tolerances are also available at additional cost.

Concentric and axial spigot runout

A review in accordance with a specified principle will be performed upon request. Values xxx < 0.02 upon request.

Technical data

Shaft deflection

When steel shafts are used as guides for linear bushings, any shaft deflection that occurs due to load must remain within certain tolerances. Otherwise function and service life will be impacted.¹⁾

In order to make it easier to calculate warping, we have listed the most frequent load conditions with their corresponding deflection equations.

The equations for calculating any shaft inclination in the linear bushing $(\tan \alpha)$ can also be found in this table.

Case no.	Load condition	Deflection equation	Shaft inclination in linear bushing
1		$f_{1} = \frac{F \times a^{3}}{6 \times E \times I} \times (2 - \frac{3 \times a}{L})$ $f_{m1} = \frac{F \times a^{2}}{24 \times E \times I} \times (3 \times L - 4a)$	$\tan \alpha_{(x=a)} = \frac{F x a^2 x b}{2 x E x I x L}$
2		$f_{2} = \frac{F x L x a^{2}}{2 x E x I} x (1 - \frac{4}{3} x \frac{a}{L})$ $f_{m2} = \frac{F x L^{2} x a}{8 x E x I} x (1 - \frac{4}{3} x \frac{a^{2}}{L^{2}})$	$\tan \alpha_{(x=a)} = \frac{F x a x b}{2 x E x I}$
3		$f_{3} = \frac{F x a^{3} x b^{3}}{3 x E x I x L^{3}}$ $f_{m3} = \frac{2 x F x a^{3} x b^{2}}{3 x E x I x L^{2}} x \left(\frac{L}{L + 2 x a}\right)^{2}$	$\tan \alpha(x=b) = \frac{Fxa^2xb^2}{2xExIxL^2} \times (1 - \frac{2xb}{L})$
4		$f_4 = \frac{F \times a^2 \times b^2}{3 \times E \times I \times L}$ $f_{m4} = f_4 \times \frac{L+b}{3 \times b} \times \sqrt{\frac{L+b}{3 \times a}}$	$\tan \alpha(x=b) = \frac{Fxa}{6xExIxL} x (3xb^2 - L^2 + a^2)$
5		$f_{m5} = \frac{5 \text{ x F x } \text{ L}^3}{384 \text{ x E x I}}$	$\tan \alpha_{(x=0)} = \frac{F x L^2}{24 x E x I}$

1) Super linear bushings 🖾, 🖽 and 🕮 experience no reduction in load rating or service life at a shaft inclination of up to 30 ft (tan 30' = 0.0087).

F	= Load	(N)	I = Planar moment of inertia ((mm ⁴)
а	= Distance	(mm)	f_1 to f_4 = Deflection at	(mm)
b	= Distance	(mm)	point of force application	
L	= Shaft length	(mm)	f _{m1} to f _{m5} = Max. deflection	(mm)
E	= Young's modulus	(N/mm²)	α = Shaft inclination in	(°)
			the linear bushing	

The table includes the values for the maximum acceptable shaft inclination (tan α_{max}) when using standard linear bushings.

When tan $\alpha = \tan \alpha_{max}$, the acceptable static load is about 0.4 C₀.

Shaft	tan α	α	α	α	
Ød					
(mm)		(10 ^{−3°})	(°)	(min.)	(sec)
5	12.3	70.5	0.0705	4	14
8	10.0	57.3	0.0573	3	26
12	10.1	57.9	0.0579	3	28
16	8.5	48.7	0.0487	2	55
20	8.5	48.7	0.0487	2	55
25	7.2	41.3	0.0413	2	29
30	6.4	36.7	0.0367	2	12
40	7.3	41.8	0.0418	2	30
50	6.3	36.1	0.0361	2	10
60	5.7	32.7	0.0327	1	58
80	5.7	32.7	0.0327	1	58
80	5.7	32.7	0.0327	1	58

E x I values and	weights	for	steel
shafts			

Solid shafts						
Ød	ExI	Weight				
(mm)	(N x mm ²)	(kg/m)				
3	8.35 x 10⁵	0.06				
4	2.64 x 10 ⁶	0.10				
5	6.44 x 10 ⁶	0.15				
8	4.22 x 10 ⁷	0.39				
10	1.03 x 10 ⁸	0.61				
12	2.14 x 10 ⁸	0.88				
14	3.96 x 10 ⁸	1.20				
16	6.76 x 10 ⁸	1.57				
20	1.65 x 10 ⁹	2.45				
25	4.03 x 10 ⁹	3.83				
30	8.35 x 10 ⁹	5.51				
40	2.64 x 10 ¹⁰	9.80				
50	6.44 x 10 ¹⁰	15.32				
60	1.34 x 10 ¹¹	22.05				
80	4.22 x 10 ¹¹	39.21				

Ho	llow	sha	fts
		0.10	

Hollow Sharts						
Shaft diar	Shaft diameter		Weight			
Outer	Inner					
(mm)	(mm)	(N x mm ²)	(kg/m)			
8	3.0	4.14 x 10 ⁷	0.34			
10	4.0	1.00 x 10 ⁸	0.51			
12	4.0	2.11 x 10 ⁸	0.79			
16	8.0	6.33 x 10 ⁸	1.18			
20	14.0	1.25 x 10 ⁹	1.25			
25	14.0	3.63 x 10 ⁹	2.63			
30	19.0	7.01 x 10 ⁹	3.30			
40	26.5	2.13 x 10 ¹⁰	5.50			
50	29.6	5.65 x 10 ¹⁰	9.95			
60	36.5	1.15 x 10 ¹¹	13.89			
80	57.4	3.10 x 10 ¹¹	19.02			

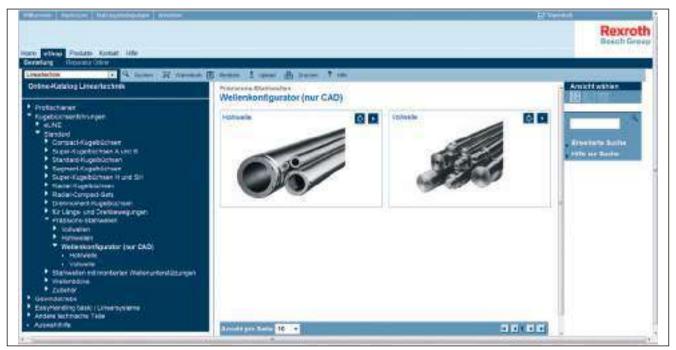
Calculation values:

Young's modulus	=	2.1	х	10 ⁵	N/mm ²
Density	=			7.8	g/cm ³

Shaft configuration tool

Shaft configuration tool in the Rexroth eShop

Rexroth offers an online product configuration tool for directly submitting product requests. Go to **www.boschrexroth.com/shaft-configuration** to quickly and easily configure specific solutions.


This online tool helps you visually configure

your desired shaft machining step by step. All catalog options are available.

Once configuration is complete, 2D and 3D data is available for download in all established formats.

Please send us a consulting request through the online tool for prices and delivery times.

The figures only show a small portion of our diverse machining options. Rexroth will machine shaft ends to suit your needs. Just send us your request!

Go to the "Shaft configuration tool" submenu in the eShop.

ture gang range total top		Rewroth
Period (Construction) Period (Construction)	E tene i di tene T en Future Statuto Eritaria di Attendo R Anne Statuto R Anne Statut	 A statistical statist

If you have the catalog, you can immediately enter the machining image number under the menu item "Machining to customer specification - Quick start".

If you do not have the catalog, you can choose from all possible shaft machining options step by step under the menu item "Machining to customer specification".

Standard shaft machining

Solid shafts

Machining by image number

010			
Planar and	rotated to length tolerance		
020		021	
Female thre	ead on one end	Female thread	on both ends
022		023	
DIN 332-D	female thread on one end	DIN 332-D fer	male thread on both ends
030			
Radial threa	ad		
031		032	
Radial threa	ad and female thread on one end	Radial thread	and female thread on both ends
040		041	
Male thread	l on one end	Male thread or	n both ends
042		043	
Male thread	with connection spigot on one end	Male thread w	ith connection spigot on both ends
050		051	
Spigot on o	ne end	Spigot on bot	h ends
052		053	
Spigot and	female thread on one end	Spigot and fer	nale thread on both ends
054		055	
Side 1: spię	got, side 2: male thread	Side 1: spigot	, side 2: male thread with spigot
056		057	
Side 1: spię	got and female thread, side 2: male thread	Side 1: spigot	and female thread, side 2: male thread with spigot

Solid shafts

Machining	by	image	number
-----------	----	-------	--------

058		059	
Side 1: spi	got, side 2: female thread	Side 1: male t	thread, side 2: female thread
060			
Side 1: mal	e thread with spigot, side 2: female thread		
070		071	
Pitch circle	front thread on one end	Pitch circle fro	ont thread on both ends
072		073	
Pitch circle	front thread and female thread on one end	Pitch circle fro	ont thread and female thread on both ends
074		075	
Side 1: pito	ch circle front thread, side 2: female thread	Side 1: pitch o	circle front thread, side 2: spigot and female thread
076			
Side 1: pitc	h circle front thread, side 2: male thread with spigot		
080		081	
Push fit fitti	ng	Threaded fittir	ng
090		091	
Annealed o	n one end	Annealed on b	ooth ends

This is only a small portion of our diverse machining options. Other machining options available upon request.

Shaft machining

Hollow shafts

Machining by image number

110			
Planar and re	otated to length tolerance		
120		121	
Female threa	d on one end	Female thread	l on both ends
170		171	
Pitch circle f	ront thread on one end	Pitch circle fro	ont thread on both ends
190		191	
Annealed on	one end	Annealed on b	oth ends

Options

The standard shaft machining options shown above can be supplemented with the following options.

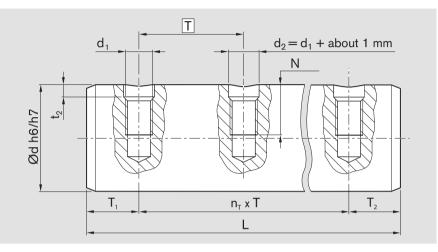
900	901
L-form wrench size	U-form wrench size
902	903
L-form plane	U-form plane
904	905
90° groove on one end	90° groove on both ends
906	907
DIN 471 groove on one end	DIN 471 groove on both ends
909	910
90° countersink on one end	90° countersink on both ends

This is only a small portion of our diverse machining options. Other machining options available upon request.

Benefits

- Diverse machining options
- Short delivery time
- Low cost

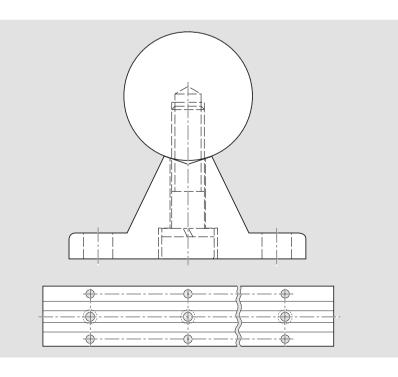
Tapped and untapped radial holes


Radial holes are necessary for supporting steel shafts. Radial holes are made in steel shafts that have already been hardened and polished.

Hole diameter, depth and spacing depend on the diameter of the shaft. The tables in Section "Steel shafts with ready-mounted shaft support rails" contain reference values.

Reference values for drilling out the hardened surface zone

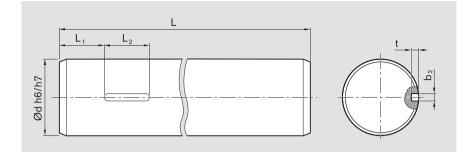
Ordering


- Request with customer drawing or
- Use the shaft configuration tool _ www.boschrexroth.com/shaft-configuration

Dimensions (mm)

Dimen	isions (mm)		Dimensions (mm)		
Ød	d ₁	t ₂	Ød	d ₁	t ₂
12	M4	2.5	50	M12	4.0
16	M5	2.5	50	M14	4.5
20	M6	3.0	50	M16	5.0
25	M8	3.0	60	M14	5.5
30	M10	3.5	60	M20	6.5
40	M10	4.0	80	M16	5.5
40	M12	4.5	80	M24	6.5

Values for stainless steel shafts available upon request.

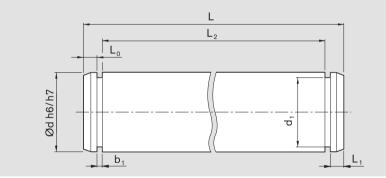


See Section "Steel shafts with ready-mounted shaft support rails" for matching shaft support rails.

Shaft machining

DIN 6885-1 keyway

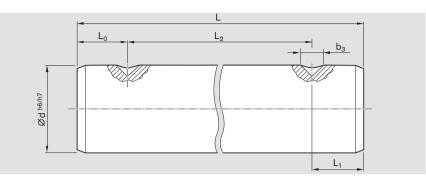
(Recommendation)


Recommended

dimensions:

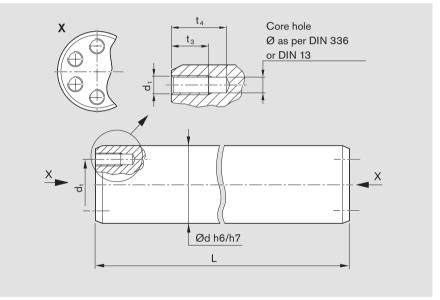
Dimen	Dimensions (mm)						
Shaft	b ₂	t					
Ød	P9						
8	2	1.2 +0.1					
10	3	1.8 +0.1					
12	4	2.5 +0.1					
14	5	3.0 +0.1					
16	5	3.0 +0.1					
20	6	3.5 +0.1					

Dimensions (mm)						
Shaft	b ₂	t				
Ød	P9					
25	8	4.0 +0.2				
30	8	4.0 +0.2				
40	12	5.0 +0.2				
50	14	5.5 +0.2				
60	18	7.0 +0.2				
80	22	9.0 +0.2				


Groove for DIN 471 retaining ring

Recommended dimensions

Dimensions (mm)			DIN 471 retaining ring	
Ød	b ₁	d ₁	Dimensions (mm)	Material number
	+0.1			
4	0.50	3.8 -0.04	4x0.4	R3410 765 00
5	0.70	4.8 -0.04	5x0.6	R3410 742 00
8	0.90	7.6 -0.06	8x0.8	R3410 737 00
10	1.10	9.6 -0.11	10x1	R3410 745 00
12	1.10	11.5 –0.11	12x1	R3410 712 00
14	1.10	13.4 –0.11	14x1	R3410 747 00
16	1.10	15.2 -0.11	16x1	R3410 713 00
20	1.30	19 –0.13	20x1.2	R3410 735 00
25	1.30	23.9 -0.21	25x1.2	R3410 750 00
30	1.60	28.6 -0.21	30x1.5	R3410 724 00
40	1.85	37.5 -0.25	40x1.75	R3410 726 00
50	2.15	47.0 -0.25	50x2	R3410 727 00
60	2.15	57.0 -0.30	60x2	R3410 764 00
80	2.65	76.5 -0.30	80x2.5	-


90° countersink

Recommended dimensions

	Dimensions (mm)													
Ød	4	5	8	10	12	14	16	20	25	30	40	50	60	80
b ₃	-	3	4	5	5	5	5	5	6	6	8	8	8	10

Pitch circle female thread

Steel shafts with shaft support rails ready-mounted, shaft support rails

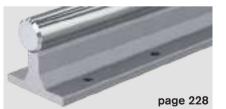
Product overview

Benefits

- For use with open linear bushings
- For long guides or heavy loads where self-supporting shafts cannot be used due to shaft warping
- Unlimited length when using interconnecting shafts
- Support rails for various requirements
- Additional degrees of freedom in circumferential direction compared to profiled rail systems
- For applications where other linear guides tend to warp due to imprecise substructures.

General

The individual supports are arranged under each shaft and separated only by installation seams. The tolerances specified in the dimension tables refer to after alignment and installation of the guide units on a torsion-resistant, faced mounting base.


R1010 Precision steel shaft with ready-mounted aluminum shaft support rails, flanged, highly affordable

R1011 Precision steel shaft with ready-mounted aluminum shaft support rails, flanged, highly affordable

R1025 same as R1010, but hole spacing for profile systems

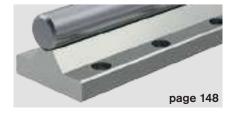
R1014 Precision steel shaft with ready-mounted aluminum shaft support rails, flanged, extremely high height tolerance

R1015 Precision steel shaft with ready-mounted aluminum shaft support rails, side mounting

Shaft support rails for radial compact set and radial linear bushing:

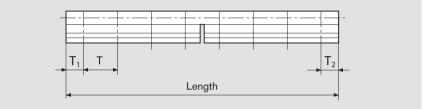
R1013 Precision steel shaft with ready-mounted aluminum shaft support rail, flangeless, highly affordable

R1016 Precision steel shaft with ready-mounted steel shaft support rail, flangeless, with reference edge



page 232

Steel shafts with ready-mounted shaft support rails


Design, ordering information, installation

Terminals T₁ and T₂

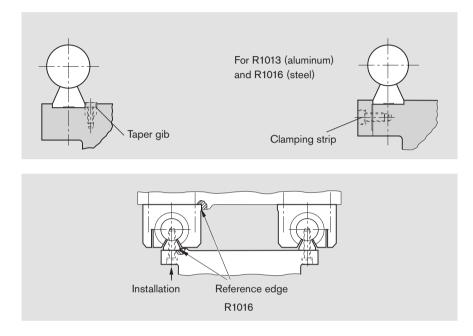
If the ordered shaft length corresponds to the whole multiple of the hole spacing of one shaft support rail, the terminals correspond to half of the spacing length $(T_1 \text{ and } T_2 = T \div 2)$. The holes are calculated by us for other lengths $(T_1 = T_2)$. This is done by shortening any excess shaft support rails on either end. Both terminals T_1 and T_2 should not be less than 0.2 x T.

If no customer drawings are available, we will include the hole spacing calculated by us for the steel shaft in the quotation and order confirmation. This produces the locations of the mounting holes in the machine bed.

We recommend comparing these specifications with the design documents. Ordering information: Material number R10.. /length x $mm/T_1 x mm/T_2 x mm$

Excess and combined guide units

A section of shaft with ready-mounted shaft support rail should not exceed 6 m. Individual sections are combined to form longer lengths (see Section "Combined shafts, connections").


The joints between shafts and shaft support rails are arranged differently depending on the model. However, the shaft joint should generally be offset from the shaft support rail seam.

Special hole spacing

Shafts with ready-mounted shaft support rails also come with special hole spacings upon the customer's request.

Note on installing flangeless shaft support rails

We recommend using a taper gib or clamping strip to secure the shaft support rail in order to make installation easier or when there is significant lateral load.

The shaft support rail must be straight during installation.

To do this, press the first shaft with shaft support rail onto the reference edge and fasten it down, then align and fasten down the second shaft, preferably using a rod. These elements only come with precision steel shafts.

The maximum length of the shaft support rail is 1,800 mm and these are joined to create longer lengths. The reference edge allows the shaft support rails to be aligned easily to avoid distortive stress on the linear bushings.

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

Flanged

R1010 steel shaft with ready-mounted shaft support rail

Material

- Shaft support rail: Aluminum

Design

- Combined with linear sets, these shaft support rails can be used to create linear guides with very low height.
- High rigidity Carefully adapting the support rail to the linear bushing size produces the ideal pressure angle for fitting the shaft, which ensures high rigidity along with the large fastening bolts.
- Highly affordable

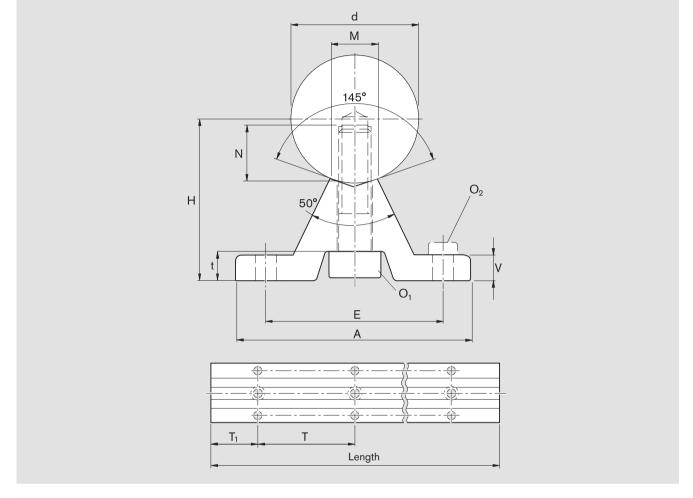
Shaft	Material number		Weight
Ø d (mm)	Hole spacing type 1	Hole spacing type 2	(kg/m)
16	R1010 016	R1010 516	2.5
20	R1010 020	R1010 520	3.8
25	R1010 025	R1010 525	5.4
30	R1010 030	R1010 530	7.6
40	R1010 040	R1010 540	12.6
	τ	Shafts:	

-00 = h6 heat-treated steel

-- 01 = h7 heat-treated steel

- 30 = h6 stainless steel

31 = h7 stainless steel


- 60 = h6 hard chrome-plated heat-treated steel

-61 = h7 hard chrome-plated heat-treated steel

Ordering example:

Shaft diameter 30 mm, h7, heat-treated steel, 900 mm long, ready-mounted shaft support rail type 1:

R1010 030 01/900 mm.

Dimensions (mm)

Ød	H ¹⁾	A	V	М	0 ₁	N	E	t	O ₂ ²⁾		Mt ³⁾
	±0.1				DIN 6912-8.8				DIN 6912-8.8	Type 1	Type 2
16	26	45	5	7.0	M5x20	9	33	6.0	M5x16	100	150
20	32	52	6	8.3	M6x25	11	37	7.0	M6x16	100	150
25	36	57	6	10.8	M8x30	15	42	7.0	M6x16	120	200
30	42	69	7	11.0	M10x35	17	51	7.5	M8x25	150	200
40	50	73	8	15.0	M10x40	19	55	7.0	M8x25	200	300

1) Measured with gauging shaft, nominal dimension d and length about 50 mm. Up to 1,800 mm length with parallelism of 0.1 mm available upon request.

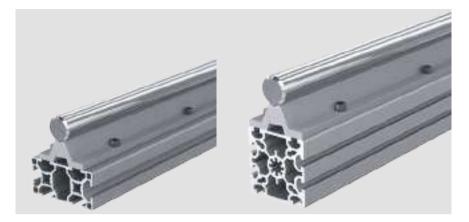
2) Only applicable for bolting with steel or cast iron threads.

3) Type 1: For transverse loads on the linear bushing opening and when approaching maximum load. Type 2: For general requirements.

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

For profile systems

R1025 steel shaft with readymounted shaft support rail¹⁾


Material

- Shaft support rail: Aluminum

Design

- Fast, easy, modular linear bushing guide design for profile systems
- Highly affordable due to less stringent height tolerance

	Shaft	Modular dimension	Material number	Weight
	Ød	E		
	(mm)	(mm)		(kg/m)
	20	40	R1025 020	3.8
_	25	40	R1025 025	5.4
_	30	45	R1025 530	7.5
	30	50	R1025 030	7.5

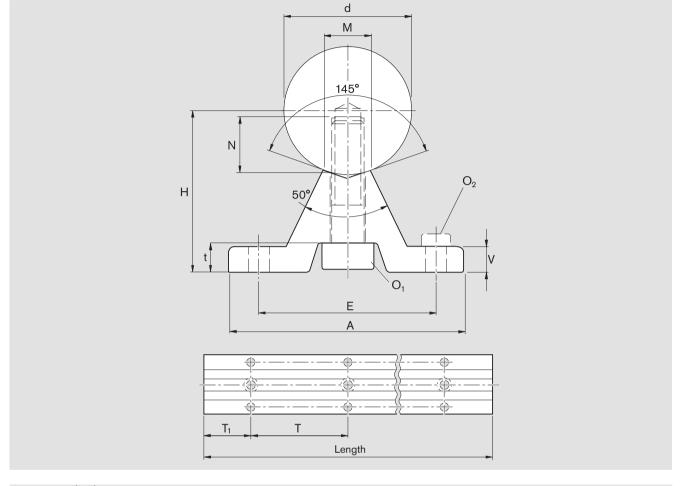
Shafts:
00 = h6 heat-treated steel
01 = h7 heat-treated steel
60 = h6 hard chrome-plated heat-treated steel
61 = h7 hard chrome-plated heat-treated steel

1) Ordering example:

Shaft diameter 25 mm, h7, heat-treated steel, 900 mm long, ready-mounted shaft support rail:

R1025 025 01/900 mm.

R1039 shaft support rail, drilled



Shaft	Modular dimension	Material number	Weight	Length
Ød	E			
(mm)	(mm)		(kg/m)	(mm)
				-0.5
				-1.5
20	40	R1039 820 30	1.3	1,800
25	40	R1039 825 30	1.6	1,800
30	45	R1039 930 30	2.0	1,800
30	50	R1039 830 30	2.0	1,800

R1039 shaft support rail, undrilled

Shaft	Material number	Weight	Length
Ød		(kg/m)	(mm)
(mm)			-0.5
			-1.5
20	R1039 520 30	1.3	1,800
25	R1039 525 30	1.6	1,800
30	R1039 530 30	2.0	1,800

Dimensions (mm)

Ød	H ¹⁾	A	V	М	0 ₁	Ν	E	t	O ₂	т
	±0.1				DIN 6912-8.8		Modular dimension		DIN 6912-8.8	
20	32	52	6	8.3	M6x25	11	40	7.0	M6	180
25	36	57	6	10.8	M8x30	15	40	7.0	M6	180
30	42	69	7	11.0	M10x35	17	45	7.5	M8	180
30	42	69	7	11.0	M10x35	17	50	7.5	M8	180

1) Measured with gauging shaft, nominal dimension d and length about 50 mm. Up to 1,800 mm length with parallelism of 0.1 mm available upon request.

See "Basic mechanical elements" catalog for profile systems.

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

Flanged, extremely accurate height tolerance

R1014 steel shaft with ready-mounted shaft support rail

Material

- Shaft support rail: Aluminum

- Combined with linear sets, these shaft support rails can be used to create linear guides with very low height.
- High rigidity Carefully adapting the support rail to the linear bushing size produces the ideal pressure angle for fitting the shaft, which ensures high rigidity along with the large fastening bolts.

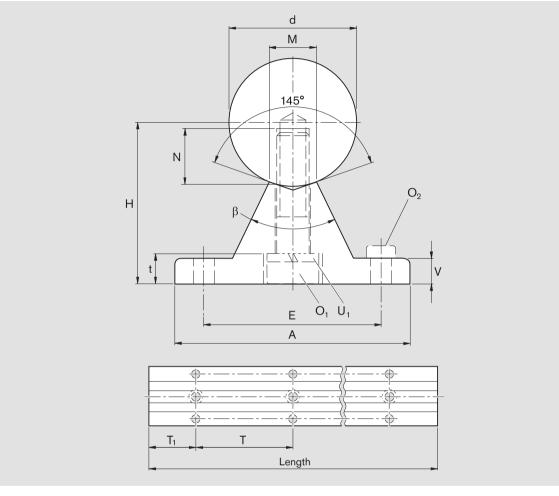
Shaft	Material number	r	Weight
Ø d (mm)	Туре 1	Type 2	(kg/m)
12	R1014 012	R1014 512	1.75
16	R1014 016	R1014 516	2.65
20	R1014 020	R1014 520	3.95
25	R1014 025	R1014 525	5.6
30	R1014 030	R1014 530	7.9
40	R1014 040	R1014 540	12.8
50	R1014 050	R1014 550	19.4
60	R1014 060	-	27.3
80	R1014 080	-	47.3
	т		

Sha	fts:				
		-			

- -00 = h6 heat-treated steel
- -01 = h7 heat-treated steel
- -30 = h6 stainless steel
- -31 = h7 stainless steel
- -60 = h6 hard chrome-plated heat-treated steel
- -61 = h7 hard chrome-plated heat-treated steel

Ordering example:

Shaft diameter 30 mm, h6, heat-treated steel, 1,200 mm long, ready-mounted shaft support rail type 1 R1050 630 00 is ordered as: R1014 030 00/1,200 mm.


R1050 shaft support rails, drilled, length (mm) 600^{-0.5}₋₁₅

R1050 shaft support rails, undrilled, length (mm) 600^{-0.5}_{-1.5}

Shaft	Material number		Weight
Ø d (mm)	Туре 1	Type 2	(kg/m)
12	R1050 612 00	R1050 712 00	0.52
16	R1050 616 00	R1050 716 00	0.64
20	R1050 620 00	R1050 720 00	0.90
25	R1050 625 00	R1050 725 00	1.08
30	R1050 630 00	R1050 730 00	1.43
40	R1050 640 00	R1050 740 00	1.81
50	R1050 650 00	R1050 750 00	2.45
60	R1050 660 00	-	3.16
80	R1050 680 00	-	4.86

Shaft	Material number	Weight
Ø d (mm)		(kg/m)
12	R1050 512 00	0.52
16	R1050 516 00	0.64
20	R1050 520 00	0.90
25	R1050 525 00	1.08
30	R1050 530 00	1.43
40	R1050 540 00	1.81
50	R1050 550 00	2.45
60	R1050 560 00	3.16
80	R1050 580 00	4.86

Dimensions (mm)

Dimen	Dimensions (mm)												
Ød	H ¹⁾	Α	v	М	O ₁	N	U ₁	Е	t	O ₂ ³⁾		Mt ⁴⁾	β
	±0.01				DIN 6912-8.8		DIN 7980 ²⁾			DIN 6912-8.8	Type 1	Type 2	(°)
12	22	40	5	5.8	M4x20	8	4	29	4.5	M4x12	75	120	50
16	26	45	5	7.0	M5x20	9	5	33	7.6	M5x16	100	150	50
20	32	52	6	8.3	M6x25	11	6	37	8.6	M6x16	100	150	50
25	36	57	6	10.8	M8x30	15	8	42	9.0	M6x16	120	200	50
30	42	69	7	11.0	M10x35	17	10	51	10.0	M8x25	150	200	50
40	50	73	8	15.0	M10x40	19	10	55	9.5	M8x25	200	300	50
50	60	84	9	19.0	M12x45	21	12	63	11.5	M10x30	200	300	46
60	68	94	10	25.0	M14x50	25	14	72	13.0	M10x30	300	-	46
80	86	116	12	34.0	M16x60	28	16	92	15.0	M12x35	300	-	46

1) Measured with gauging shaft, nominal dimension d and length about 50 mm.

2) DIN 7980 discontinued. Spring washer commercially available.

3) Only applicable for bolting with steel or cast iron threads.

4) Type 1: For transverse loads on the linear bushing opening and when approaching maximum load, as well as when dimensional accuracy is strictly required.

Type 2: For general requirements.

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

R1011 steel shaft with ready-mounted shaft support rail

Material

- Shaft support rail: Aluminum

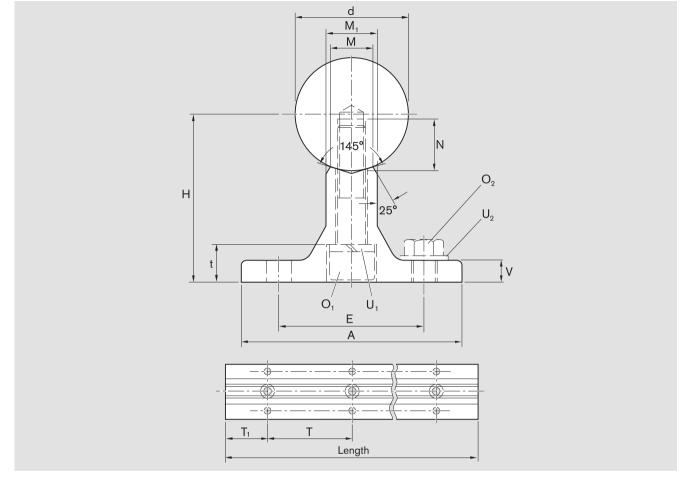
Shaft	Material number		Weight
Ø d (mm)	Type 1	Type 2	(kg/m)
12	R1011 012	R1011 512	1.95
16	R1011 016	R1011 516	2.80
20	R1011 020	R1011 520	4.10
25	R1011 025	R1011 525	5.90
30	R1011 030	R1011 530	8.50
40	R1011 040	R1011 540	13.30
50	R1011 050	R1011 550	20.30
	Τ	— 01 = — 30 = — 31 =	afts: = h6 heat-treated steel = h7 heat-treated steel = h6 stainless steel = h7 stainless steel = h6 hard chrome-plated heat-treated steel

-61 = h7 hard chrome-plated heat-treated steel

Ordering example:

Shaft diameter 40 mm, h7, stainless steel, 1,100 mm long, ready-mounted shaft support rail type 2 R1050 240 00 is ordered as: R1011 540 31/1,100 mm.

R1050 shaft support rails, drilled, length (mm) $600^{-0.5}_{-1.5}$



Shaft	Material number								
Ø d (mm)	Туре 1	Туре 2	(kg)						
12	R1050 112 00	R1050 212 00	0.64						
16	R1050 116 00	R1050 216 00	0.74						
20	R1050 120 00	R1050 220 00	1.00						
25	R1050 125 00	R1050 225 00	1.20						
30	R1050 130 00	R1050 230 00	1.80						
40	R1050 140 00	R1050 240 00	2.10						
50	R1050 150 00	R1050 250 00	3.00						

R1050 shaft support rails, undrilled, length (mm) $600^{-0.5}_{-1.5}$

Shaft	Material number	Weight
Ød	Undrilled	
(mm)		(kg)
12	R1050 012 00	0.64
16	R1050 016 00	0.74
20	R1050 020 00	1.00
25	R1050 025 00	1.20
30	R1050 030 00	1.80
40	R1050 040 00	2.10
50	R1050 050 00	3.00

Dimens	Dimensions (mm)													
Ød	H ¹⁾	Α	v	М	M ₁	0 ₁	U ₁	N	E	t	O ₂ ³⁾	U ₂	Mt ⁴⁾	
	±0.05					ISO 4762-8.8	DIN				ISO 4762-8.8	DIN 125	Type 1	Type 2
							7980 ²⁾				or			
											ISO 4017-8.8			
12	28	43	5	5.8	9	M4x25	4	8	29	5.5	M4x12	4	75	120
16	30	48	5	7.0	10	M5x25	5	9	33	7.0	M5x16	5	100	150
20	38	56	6	8.3	11	M6x30	6	11	37	9.6	M6x16	6	100	150
25	42	60	6	10.8	14	M8x35	8	15	42	11.0	M6x16	6	120	200
30	53	74	8	11.0	14	M10x40	10	17	51	14.0	M8x25	8	150	200
40	60	78	8	15.0	18	M10x45	10	19	55	13.5	M8x25	8	200	300
50	75	90	10	19.0	22	M12x55	12	21	63	16.0	M10x30	10	200	300

1) Measured with gauging shaft, nominal dimension d and length about 50 mm.

2) DIN 7980 discontinued. Spring washer commercially available.

3) Only applicable for bolting with steel or cast iron threads.

4) Type 1: For transverse loads on the linear bushing opening and when approaching maximum load, as well as when dimensional accuracy is strictly required.

Type 2: For general requirements.

 Combine with linear sets with side opening for heavy-duty linear guides

Reference edge makes aligning easi-

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

Material

- Shaft support rail: Aluminum

Side mounting

R1015 steel shaft with ready-mounted shaft support rail

R1054 shaft support rails

Type 1

Shaft	Material number	Weight	Material number	Weight
Ød				
(mm)		(kg)		(kg)
20	R1015 020	4.1	R1054 120 00	1.0
25	R1015 025	6	R1054 125 00	1.3
30	R1015 030	8.7	R1054 130 00	1.9
40	R1015 040	14.3	R1054 140 00	2.7
50	R1015 050	21.5	R1054 150 00	3.7

Design

er (installation)

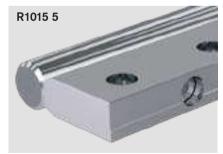
_

Shafts:

-- 00 = h6 heat-treated steel

— 01 = h7 heat-treated steel

- 30 = h6 stainless steel


— 31 = h7 stainless steel

- 60 = h6 hard chrome-plated heat-treated steel

- 61 = h7 hard chrome-plated heat-treated steel

Type 2

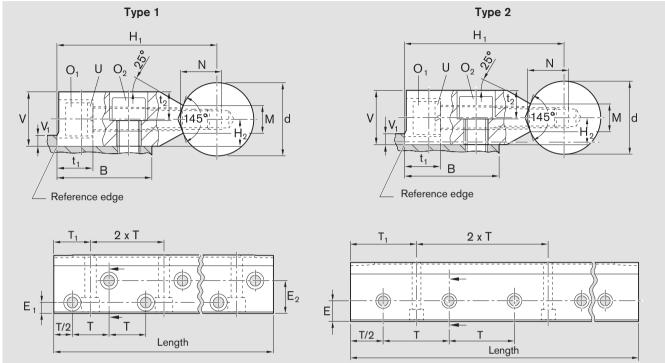
R1054 2, length (mm) 600 -0.5/-1.5

Shaft Ø d (mm)	Material number	Weight (kg)	Material number	Weight (kg)
. ,	R1015 520	Ū.	R1054 220 00	1.1
25	R1015 525	6.3	R1054 225 00	1.5
30	R1015 530	9	R1054 230 00	2.1
40	R1015 540	14.8	R1054 240 00	3.0
50	R1015 550	22.3	R1054 250 00	4.2
	Shafts:		-1	

-00 = h6 heat-treated steel

-01 = h7 heat-treated steel

— 30 = h6 stainless steel


-31 = h7 stainless steel

-60 = h6 hard chrome-plated heat-treated steel

-61 = h7 hard chrome-plated heat-treated steel

Ordering example:

Shaft diameter 30 mm, h6, heat-treated steel, 1,200 mm long, ready-mounted shaft support rail type 1 R1054 130 00 is ordered as: R1015 030 00/1,200 mm.

Shaft support rail type 1

Dimensions (mm)														
H ₁ ¹⁾	H ₂ ¹⁾	v	М	E ₁	E ₂	т	t ₁	t ₂	V1 ²⁾	B ²⁾	N	O ₁	O ₂ ³⁾	U
js6	±0.012			±0.15	±0.15				max.			ISO 4762-8.8	ISO 4762-8.8	DIN 79804)
52	7.5	15	8.3	8	22	37.5	8.5	8.5	4.0	30	11	M6x45	M6x16	6
62	10.0	20	10.8	10	26	37.5	15.0	11.0	5.5	36	15	M8x50	M8x20	8
72	12.5	25	11.0	12	30	50.0	15.3	13.5	7.0	42	17	M10x60	M10x25	10
88	15.0	30	15.0	12	38	50.0	19.0	16.0	8.5	50	21	M12x70	M12x30	12
105	17.5	35	19.0	15	45	50.0	24.0	18.5	9.0	60	25	M14x80	M14x35	14
	H ₁ ¹⁾ js6 52 62 72 88	H111 H211 js6 ±0.012 52 7.5 62 10.0 72 12.5 88 15.0	H111 H211 V js6 ±0.012 15 52 7.5 15 62 10.0 20 72 12.5 25 88 15.0 30	H111) H211) V M js6 ±0.012 -	H111 H211 V M E1 js6 ±0.012 1 ±0.15 52 7.5 15 8.3 8 62 10.0 20 10.8 10 72 12.5 25 11.0 12 88 15.0 30 15.0 12	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H111 H211 V M E1 E2 T t1 t2 js6 ±0.012 ±0.15 </th <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>H111 H211 V M E1 E2 T H1 L2 V12 B2 N O1 js6 ±0.012 ±0.012 ±0.15 ±0.15 ±0.15 ±0.15 ±0.15 max. M N O1 ISO 4762-8.8 ISO 4762-8.8 52 7.5 15 8.3 8 22 37.5 8.5 8.5 4.0 30 11 M6x45 62 10.0 20 10.8 10 26 37.5 15.0 11.0 5.5 36 15 M8x50 72 12.5 25 11.0 12 30 50.0 15.3 13.5 7.0 42 17 M10x60 88 15.0 30 15.0 16.0 8.5 50 21 M12x70</th> <th>H₁¹¹ H₂¹¹ V M E₁ E₂ T t₁ t₂ V₁²¹ B²¹ N O₁ O₂³⁾ js6 ±0.012 ±0.15 ±0.15 ±0.15 ±0.15 ±0.15 ±0.15 max. ISO 4762-8.8 ISO 4762-8.8 ISO 4762-8.8 ISO 4762-8.8 ISO 4762-8.8 ISO 4762-8.8 M6x16 52 7.5 15 8.3 8 22 37.5 8.5 8.5 4.0 30 11 M6x45 M6x16 62 10.0 20 10.8 10 26 37.5 15.0 11.0 5.5 36 15 M8x50 M8x20 72 12.5 25 11.0 12 30 50.0 15.3 13.5 7.0 42 17 M10x60 M10x25 78 15.0 30 15.0 19.0 16.0 8.5 50 21 M12x70 M12x30</th>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H111 H211 V M E1 E2 T H1 L2 V12 B2 N O1 js6 ±0.012 ±0.012 ±0.15 ±0.15 ±0.15 ±0.15 ±0.15 max. M N O1 ISO 4762-8.8 ISO 4762-8.8 52 7.5 15 8.3 8 22 37.5 8.5 8.5 4.0 30 11 M6x45 62 10.0 20 10.8 10 26 37.5 15.0 11.0 5.5 36 15 M8x50 72 12.5 25 11.0 12 30 50.0 15.3 13.5 7.0 42 17 M10x60 88 15.0 30 15.0 16.0 8.5 50 21 M12x70	H ₁ ¹¹ H ₂ ¹¹ V M E ₁ E ₂ T t ₁ t ₂ V ₁ ²¹ B ²¹ N O ₁ O ₂ ³⁾ js6 ±0.012 ±0.15 ±0.15 ±0.15 ±0.15 ±0.15 ±0.15 max. ISO 4762-8.8 ISO 4762-8.8 ISO 4762-8.8 ISO 4762-8.8 ISO 4762-8.8 ISO 4762-8.8 M6x16 52 7.5 15 8.3 8 22 37.5 8.5 8.5 4.0 30 11 M6x45 M6x16 62 10.0 20 10.8 10 26 37.5 15.0 11.0 5.5 36 15 M8x50 M8x20 72 12.5 25 11.0 12 30 50.0 15.3 13.5 7.0 42 17 M10x60 M10x25 78 15.0 30 15.0 19.0 16.0 8.5 50 21 M12x70 M12x30

Shaft support rail type 2

Dimei														
Ød	H ₁ ¹⁾	H ₂ ¹⁾	V	М	Е	Т	t ₁	t ₂	V ₁ ²⁾	B ²⁾	Ν	0 ₁	O ₂ ³⁾	U
	js6	±0.012			±0.15				max.			ISO 4762-8.8	ISO 4762-8.8	DIN 7980 ⁴⁾
20	52	7.5	15	8.3	15	50	8.5	8.5	4.0	30	11	M6x45	M6x16	6
25	62	10.0	20	10.8	18	60	15.0	11.0	5.5	36	15	M8x50	M8x20	8
30	72	12.5	25	11.0	21	75	15.3	13.5	7.0	42	17	M10x60	M10x25	10
40	88	15.0	30	15.0	25	100	17.5	16.0	8.5	50	19	M10x70	M12x30	10
50	105	17.5	35	19.0	30	100	21.5	18.5	9.0	60	21	M12x80	M14x35	12

1) Measured with gauging shaft, nominal dimension d and length about 50 mm.

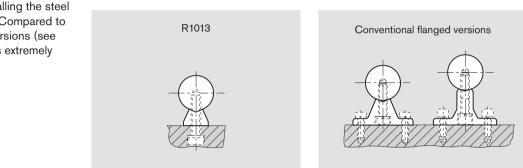
2) Recommended design: No reference edge on opposite side (V_1), align parallel over shafts.

3) Recommendation applies only for bolting in steel or cast iron threads.

4) DIN 7980 discontinued. Spring washer commercially available.

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

Flangeless


R1013 steel shaft with ready-mounted shaft support rail

Material

- Shaft support rail: Aluminum

Design

- This shaft support rail helps create highly compact guides and is designed for when installing the steel shaft from underneath. Compared to conventional flanged versions (see figure), this element has extremely low height.
- Highly affordable

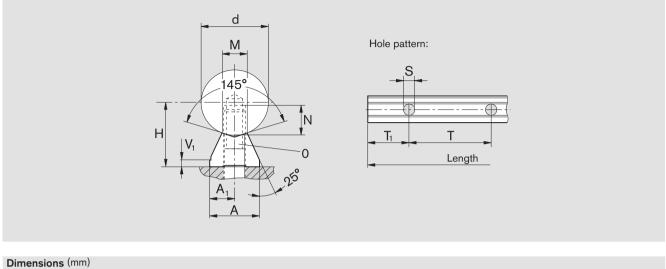
Shaft Ø d	Material number	Weight
(mm)		(kg/m)
12	R1013 012	1.1
16	R1013 016	1.9
20	R1013 020	3.0
25	R1013 025	4.5
30	R1013 030	6.3
	T ou n	·

-00 = h6 heat-treated steel

-01 = h7 heat-treated steel

-30 = h6 stainless steel

-31 = h7 stainless steel


-60 = h6 hard chrome-plated heat-treated steel

61 = h7 hard chrome-plated heat-treated steel

Ordering example:

Shaft diameter 25 mm, h7, heat-treated steel, 1,500 mm long, ready-mounted shaft support rail:

R1013 025 01/1500 mm.

Ød	H ¹⁾ ±0.05		A ₁	V ₁	т	S	Ν	м	O ISO 4762-8.8
12	14.5	11	5.5	3	75	4.5	8	5.8	
16	18.0	14	7.0	3	75	5.5	9	7.0	M5
20	22.0	17	8.5	3	75	6.6	11	8.3	M6
25	26.0	21	10.5	3	75	9.0	15	10.8	M8
30	30.0	23	11.5	3	100	11.0	17	11.0	M10

1) Measured with gauging shaft, nominal dimension d and length about 50 mm. Up to 1,800 mm length with parallelism of 50 μ m available upon request.

Conventional flanged versions

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

Flangeless, with reference edge

R1016 steel shaft with ready-mounted shaft support rail

Material

- Shaft support rail: Steel

Design

- This steel support rail helps create highly compact guides and is designed for when installing the steel shaft from underneath. Compared to conventional flanged versions (see figure), this element has extremely low height.
- Reference edge makes aligning easier

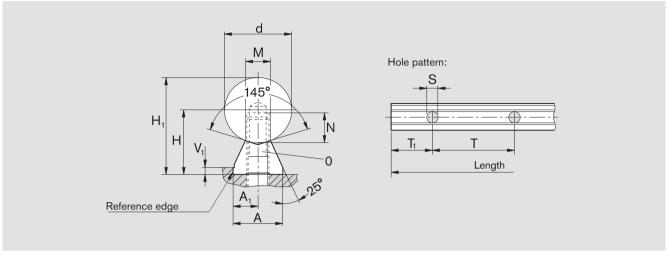
Shaft	Material number	Weight
Ød		
(mm)		(kg/m)
16	R1016 016	2.5
20	R1016 020	3.8
25	R1016 025	5.6
30	R1016 030	7.6
40	R1016 040	13.4
50	R1016 050	20.2

R1016

-00 = h6 heat-treated steel

----01 = h7 heat-treated steel

-31 = h7 stainless steel


-60 = h6 hard chrome-plated heat-treated steel

-61 = h7 hard chrome-plated heat-treated steel

Ordering example:

Shaft diameter 30 mm, h7, heat-treated steel, 900 mm long, ready-mounted shaft support rail:

R1016 030 01/900 mm.

Dimens	sions (m	m)				Grading tolerances (µm)							
												h6 shaft	h7 shaft
Ød	H ¹⁾	H ₁	Α	A ₁	V ₁	Т	S	N	М	0	H ²⁾	H ₁ ³⁾	H ₁ ³⁾
			±0.02	±0.02						DIN 4762-8.8			
16	18	26.0	14	7.0	3	75	5.5	9	7.0	M5	20	32	36
20	22	32.0	17	8.5	3	75	6.6	11	8.3	M6	20	33	38
25	26	38.5	21	10.5	3	75	9.0	15	10.8	M8	20	33	38
30	30	45.0	23	11.5	3	100	11.0	17	11.0	M10	20	33	38
40	39	59.0	30	15.0	4	100	13.5	21	15.0	M12	20	35	41
50	46	71.0	35	17.5	5	100	15.5	25	19.0	M14	20	35	41

1) Tolerance: ± 0.02 mm; comes with a height grade of 20 $\mu m.$

2) Measured with gauging shaft, nominal dimension d and length about 50 mm. Up to 1,800 mm length with parallelism of 10 μ m available upon request.

3) Includes shaft tolerance (determined from statistics).

Product overview

The benefits

- For easy installing and quick aligningPrecise design with reference edge
- _ More affordable than in-house designs

page 239

Aluminum compact R1058

page 238

Aluminum R1057

Cast iron, steel R1055

Cast iron flange R1056

Sample shaft support block:

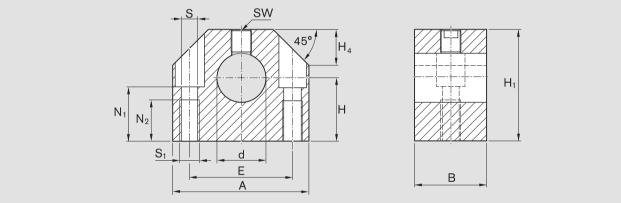
Shaft support block WBA-30-C-FO

Definition of codes		W	BA	30	0 0) FC	0				
Туре	Shaft support block	=WB						F	0 =	 Top securing 	Fastening
Material	Cast iron	= G						Р	=	 For profile systems 	
	Aluminum	= A						F	=	= Flanged	
	Steel	= S						C	=	Compact	Form
Shaft diameter		= 30									

Compact shaft block, R1058

Material

- Aluminum


Design

- Very low height fitting linear sets with compact linear bushings
- Topside clamping for better accessibility
- Better security thanks to clamping screw with larger thread diameter
- Thread for fastening from below
- Drill hole for fastening from above

Shaft Ø d	Material number WBAC-FO	Weight
(mm)		(kg)
12	R1058 012 00	0.045
16	R1058 016 00	0.065
20	R1058 020 00	0.110
25	R1058 025 00	0.170
30	R1058 030 00	0.220
40	R1058 040 00	0.470
50	R1058 050 00	0.820

Dimensions

Dimensi	Dimensions (mm)											Tightening	
Ød	d	H ¹⁾	H ₁	Α	В	E	S ²⁾	S ₁	N ₁	N_2	H ₄	SW	torque
	H8	±0.01				±0.15							(Nm)
12	12	19	33	40	18	27	5.3	M6	16	13	11	2.5	3.8
16	16	22	38	45	20	32	5.3	M6	18	13	13	2.5	3.8
20	20	25	45	53	24	39	6.6	M8	22	18	15	3.0	6.6
25	25	31	54	62	28	44	8.4	M10	26	22	17	4.0	16.0
30	30	34	60	67	30	49	8.4	M10	29	22	19	4.0	16.0
40	40	42	76	87	40	66	10.5	M12	38	26	24	5.0	30.0
50	50	50	92	103	50	80	13.5	M16	46	34	30	6.0	52.0

1) In relation to nominal shaft dimension d

2) ISO 4762-8.8 fastening bolts

Explanation of sample short product name

WB	А	20 -	С	- FO
Shaft support block	Aluminum	Ø 20	Compact series	Top securing

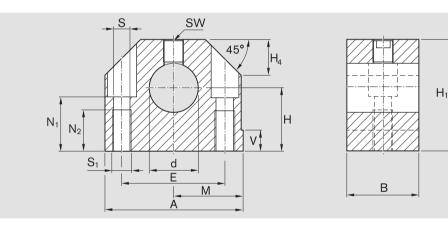
See page 236 for more information on short product names.

Note: Same version with side clamping available under R1058 7 ..

Shaft support blocks, R1057

Material

- Aluminum


Design

- Rigid shaft mounting due to extrawide design
- Topside clamping for better accessibility
- Better security thanks to clamping screw with larger thread diameter
- Thread for fastening from below
- Drill hole for fastening from above
- Reference edge for easy alignment

	(kg)
R1057 010 00	0.05
R1057 012 00	0.06
R1057 016 00	0.11
R1057 020 00	0.18
R1057 025 00	0.35
R1057 030 00	0.48
R1057 040 00	0.90
R1057 050 00	1.50
R1057 060 00	3.00
	R1057 012 00 R1057 016 00 R1057 020 00 R1057 025 00 R1057 030 00 R1057 040 00 R1057 050 00

Dimensions

Dimer	Dimensions (mm)														Tightening
Ød	d	H ¹⁾	H ₁	M ¹⁾	Α	В	E	S ²⁾	S ₁	N ₁	N ₂	v	H_4	SW	torque
	H8	±0.01		±0.01											(Nm)
10	10	18	31	20.0	40	20	27 ^{±0.15}	5.3	M6	14.0	13	5.0	10	2.5	3.8
12	12	20	35	21.5	43	20	30 ^{±0.15}	5.3	M6	16.5	13	5.0	10	2.5	3.8
16	16	25	42	26.5	53	24	38 ^{±0.15}	6.6	M8	21.0	18	5.0	13	3.0	6.6
20	20	30	51	30.0	60	30	42 ^{±0.15}	8.4	M10	25.0	22	5.0	16	4.0	16.0
25	25	35	61	39.0	78	38	56 ^{±0.15}	10.5	M12	30.0	26	6.5	20	5.0	30.0
30	30	40	70	43.5	87	40	64 ^{±0.15}	10.5	M12	34.0	26	8.0	22	5.0	30.0
40	40	50	88	54.0	108	48	82 ^{±0.15}	13.5	M16	44.0	34	10.0	28	6.0	52.0
50	50	60	105	66.0	132	58	100 ^{±0.20}	17.5	M20	49.0	42	12.0	37	8.0	120.0
60	60	75	130	82.0	164	74	124 ^{±0.20}	22.0	M27	59.0	42	13.0	42	10.0	220.0

1) In relation to nominal shaft dimension d 2) ISO 4762-8.8 fastening bolts

Explanation of sample short product name

WB	А	20 -	FO
Shaft support block	Aluminum	Ø 20	Top securing

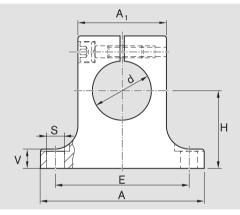
See page 236 for more information on short product names.

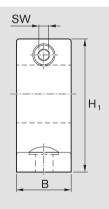
Note: Same version with side clamping available under R1057 7 ..

Shaft support blocks, R1055

Material

- Spheroidal graphite cast iron
- Steel


Design


- Side clamping

Shaft Ø d	Material number WBG	Weight
(mm)		(kg)
8	R1055 008 00	0.04
12	R1055 012 00	0.06
16	R1055 016 00	0.12
20	R1055 020 00	0.22
25	R1055 025 00	0.37
30	R1055 030 00	0.55
40	R1055 040 00	0.97
50	R1055 050 00	1.90
60	R1055 060 00	3.60
80	R1055 080 00	7.30

Dimensions

Dimens	imensions (mm)									
Ød	d	H ¹⁾	H ₁ ²⁾	A ²⁾	A ₁ ²⁾	B ²⁾	E	S ³⁾	V ²⁾	SW
	H8									
8	8	15 ^{±0.010}	27	32	16	10	25 ^{±0.15}	4.5	5.0	2.5
12	12	20 ^{±0.010}	35	42	20	12	32 ^{±0.15}	5.5	5.5	3.0
16	16	25 ^{±0.010}	42	50	26	16	40 ^{±0.15}	5.5	6.5	3.0
20	20	30 ^{±0.010}	50	60	32	20	45 ^{±0.15}	5.5	8.0	3.0
25	25	35 ^{±0.010}	58	74	38	25	60 ^{±0.15}	6.6	9.0	4.0
30	30	40 ^{±0.010}	68	84	45	28	68 ^{±0.20}	9.0	10.0	5.0
40	40	50 ^{±0.010}	86	108	56	32	86 ^{±0.20}	11.0	12.0	6.0
50	50	60 ^{±0.015}	100	130	80	40	108 ^{±0.20}	11.0	14.0	6.0
60	60	75 ^{±0.015}	124	160	100	48	132 ^{±0.25}	13.5	15.0	8.0
80	80	100 ^{±0.015}	160	200	130	60	170 ^{±0.50}	17.5	22.0	10.0
1) In relation to nominal shaft dimension d 2) ISO 8062-3 - DCTG 11 tolerance 3) ISO 4762-8.8 socket head cap b								ap bolts.		

Explanation of sample short product name

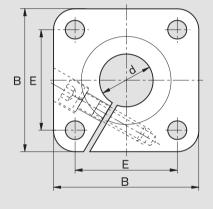
WB	G	20
Shaft support block	Spheroidal graphite cast iron	Ø 20

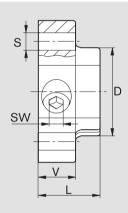
See page 236 for more information on short product names.

Shaft support block, R1056 Flanged

Material

- Lamellar graphite cast iron


Design


- Compared to installing the shafts in customer-made bores, flanged shaft support blocks allow the shafts to be aligned and prevent the linear bushings from overloading due to shafts that are not parallel
- Side clamping screw

Dimensions

Shaft Ø d	Material number WBGF	Weight	
(mm)			(kg)
12	R1056 012 00		0.15
16	R1056 016 00		0.21
20	R1056 020 00		0.28
25	R1056 025 00		0.41
30	R1056 030 00		0.75
40	R1056 040 00		1.65
50	R1056 050 00		2.60

Dimensions (mm)

Ød	d	B ¹⁾	L ¹⁾	D ¹⁾	E	S	V ¹⁾	SW
	H7					H13		
12	12	42	20	23.5	30 ^{±0.12}	5.5	12	3
16	16	50	20	27.5	35 ^{±0.12}	5.5	12	3
20	20	54	23	33.5	38 ^{±0.15}	6.6	14	4
25	25	60	25	42.0	42 ^{±0.15}	6.6	16	5
30	30	76	30	49.5	54 ^{±0.25}	9.0	19	6
40	40	96	40	65.0	68 ^{±0.25}	11.0	26	8
50	50	106	50	75.0	75 ^{±0.25}	11.0	36	8

1) ISO 8062-3 - DCTG 9 tolerance

Explanation of sample short product name

WB	G	20 -	F
Shaft support block	Lamellar graphite cast iron	Ø 20	Flanged

See page 236 for more information on short product names.

Further information

Here you will find extensive information on products, eShop, training and services.

Product information:

http://www.boschrexroth.com/en/xc/products/productgroups/linear-motion-technology/index

eShop:

http://www.boschrexroth.com/eshop

Training:

http://www.boschrexroth.com/training

Service:

http://www.boschrexroth.com/service

Notes

Bosch Rexroth AG Ernst-Sachs-Straße 100 97424 Schweinfurt, Deutschland Tel. +49 9721 937-0 Fax +49 9721 937-275 www.boschrexroth.com

Find your local contact here: www.boschrexroth.com/contact

R999000488 (2015-02) Replaces R310EN3100 (2007.03) © Bosch Rexroth AG 2015 Subject to change. This information is solely for describing the product. Since our products are continuously being developed, no conclusions can be derived from this information regarding a certain condition or suitability for a certain application. This information does not release the user from conducting their own assessments and tests. Please note that our products are subject to a natural wear and aging process.