

Ball and Plug Valves

Catalog 4121-BV

July 2014

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

ENGINEERING YOUR SUCCESS.

Introduction

Parker manually, pneumatically, and electrically actuated two-way B Series Ball Valves provide quick 1/4 turn on-off control of fluids utilized in process and instrumentation applications. A broad selection of valve body, seat, and seal materials provide a wide range of pressures and temperatures at which the valve may be used.

Features

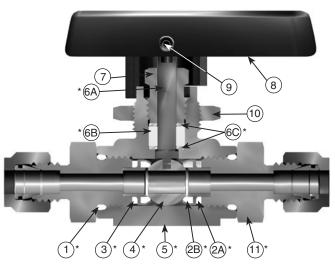
B

- Free floating ball design provides seat wear compensation.
- Available in 316 stainless steel and brass construction. Monel[®] Alloy 400 and Hastelloy[®] C-276 construction available upon request.
- Micro-finished ball provides a positive seal.
- Straight through flow path for minimum pressure drop.
- Bi-directional flow.
- Wide variety of US Customary and SI ports.
- ▶ 90° actuation.
- Panel mountable.
- Adjustable PTFE stem seal can be maintained in-line.
- ► Handle indicates flow direction.
- Low operating torques.
- Positive handle stops.
- Color coded handles.
- Optional pneumatic and electric actuation.
- Optional live-loaded PTFE stem seals.
- Optional non-adjustable O-ring stem seals.
- Optional upstream and downstream drain models.
- Optional stainless steel and extended handles.

Specifications

Pressure Ratings:

Material	CWP	with PTFE Seats
316 Stainless Steel	6000 psig (414 bar)*	1500 psig (103 bar)
Brass	3000 psig (207 bar)	1500 psig (103 bar)
Monel [®] Alloy 400		
B2 and B6:	3000 psig (207 bar)	1500 psig (103 bar)
B8:	2000 psig (138 bar)	1500 psig (103 bar)
Hastelloy [®] C-276		
B2 and B6:	4000 psig (276 bar)	1500 psig (103 bar)
B8:	3000 psig (207 bar)	1500 psig (103 bar)


* B6 Series: 6000 psig rating or 4400 psig (303 bar) CWP B8 Series: 6000 psig rating or 4000 psig (276 bar) CWP

Pressure Rating and Tubing Selection

For working pressures of A-LOK[®] and CPI[™] tube connections, please see the Instrument Tubing Selection Guide (Bulletin 4200-TS), found in the Technical Section of the Parker Instrumentation Process Control Binder, or the Parker Instrument Fitting Installation Manual (Bulletin 4200-B4).

For working pressures of valves with external or internal pipe threads, please see Catalog 4260, Instrumentation Pipe Fittings.

Materials of Construction

Model Shown: 6A-B6LJ-SSP

Materials of Construction

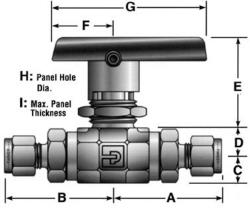
Item #	Part Description	Stainless Steel	Brass			
*1	Connector O-Ring	PTFE**				
*2A	Seat Retainer	ASTM A 276 Type 316	ASTM B 16 Alloy C36000			
*2B	Seat	PTFE, PCTFE	, PEEK			
*3	Retainer Seal	PTFE**	k			
*4	Ball	Ball 316 Stainless Steel				
*5	Body ASTM A 351 Grade CF3M		ASTM B 283 Alloy C37700			
*6A	Stem	ASTM A 276 Type 316				
*6B	Stem Seal	PTFE**	k			
*6C	Stem Washer	316 Stainless	s Steel			
7	Packing Nut ASTM A 479 Type 316		ASTM B 453 Alloy C34000			
8	Handle	Nylon 6/	/6			
9	Handle Set Screw	Stainless S	Steel			
10	Panel Nut	316 Stainless	s Steel			
*11	End Connector	ΔςτΜ Δ 479				

Wetted Parts.

 * Optional stem seal and body seal materials are described in the How to Order section.

Lubrication: Perfluorinated Polyether.

Hastelloy[®] is a registered trademark of Haynes International. Monel[®] Alloy 400 is a registered trademark of Special Metals Corporation.



Two-Way B Series Ball Valves

Go to Table of Contents

B

Dimensions & Flow Data

Model Shown: 4A-B6LJ-SSP

Part SizePart 				Flow	/ Data	200 						Dimension	\$			
Sine 172PartInchInchInchVVPertPertAPertCCDEFOHII17217400001.000.00	Port	Rasic	Ori]		End Connections									
12 2A 2A 2A 2A 2A 2A 0.00 0.45 116 (P)" (33.0)			Inch	mm	Cv	X _T *	Port 1 Port 2	At	B†	c	D	E	F	G	н	I
12 0			0.052	1.3	0.06	0.45										
2Z 0.083 2.4 0.21 0.41 107 (P) ^m (27.9) (24.5) (27.9) (24.5) (27.9) (27.5) (27.9) 0.33 (8.4) 0.34 0.37 (27.9) 0.33 (8.4) 0.34 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>{</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										{						
22 31 0.16 4.2 0.33 0.03 1/5 Handle P1 (27.2) (27.0) (30			0.093	2.4	0.21	0.47										
2M 2L 0.16 4.2 0.33 0.43 1/8 Mak NP1 1.18 0.30 0.03 0.04 0.75 1.18 0.88 0.13 4A 2 0.165 4.2 0.33 0.44 1.47 M(N)* 1.48 1.47 MAR 1.47 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.41 1.41	2F		0.165	4.2	0.93	0.43	1/8" Female NPT		1]						
201 44 4 0.16 4.2 0.03 0.43 1.67 Mar NP1 0.00 (8.0) (8.4)									<u> </u>	0.33	0.33	0.94	0.75	1.88	0.58	0.13
42 0.16 4.2 0.03 0.43 14 CPPP 0.76 (1.37 (1.37)) 0.76 (1.37) 0.76 (1.37) 0.77 (1.33) 0.83 0.43 144 Me NPT 0.18 (1.33) 0.137 1.35 (1.33) 0.137 1.37 1.36 (1.33) 0.137 1.37 (1.43) 0.137 1.37 (1.43) 0.137 1.37 (1.43) 0.137 1.37 (1.43) 0.138 (1.43) 0.138 (1.43) 0.138 (1.43) 0.138 (1.43) 0.138 (1.43) 0.138 (1.43) 0.138 (1.43) 0.29 (1.43) 0.23 (1.43) 0.23 (1.43) 0.23 (1.43) 0.23 (1.43) 0.24 (1.43) 0.23 (1.43) 0.24 (1.43) 0.24 (1.43) 0.24 (1.43) 0.24 (1.43) 0.24 (1.43) 0.24 (1.43) 0.24 (1.43) 0.24 (1.43) 0.24 (1.43) 0.24 (1.43)		B2L	0.165	4.2	0.93	0.43				(8.4)	(8.4)	(23.9)	(19.1)	(47.8)	(14.7)	(3.3)
4M 0.165 4.2 0.93 0.43 1/4' Male NPT 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.37 1.31 1.51			0.165	4.2	0.93	0.43		-	1							
M3A M3A <td></td> <td></td> <td>0 165</td> <td>4.2</td> <td>0.93</td> <td>0.43</td> <td></td> <td></td> <td>1.35</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			0 165	4.2	0.93	0.43			1.35	1						
MA2 0.08 2.2 0.18 0.44 3mm CplW (34.8) (34.7) (34.8)			0.100	7.2	0.00	0.40				ł						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.086	2.2	0.18	0.44		-								
42 0 0 0.4 0/1 ⁴ <th0< td=""><td></td><td></td><td>0.187</td><td>4.7</td><td>1.04</td><td>0.42</td><td></td><td>-</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th0<>			0.187	4.7	1.04	0.42		-	1							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										{						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4F		0.250	6.4	2.34	0.29	1/4" Female NPT	1								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4M		0.250	6.4	2.34	0.29	1/4" Male NPT	1]						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										{						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4Q		0.180	4.6	1.03	0.42	1/4" UltraSeal									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4V		0.188	4.8	1.04	0.42	1/4" VacuSeal									
b2 0.250 6.4 2.34 0.29 3/8 UPT (45.7) (45.7) (45.7) (10.7) (11.9) (38.9) (25.4) (63.5) (19.6) (6.4) 60 0.250 6.4 2.34 0.29 3/8 UPT (15.1) 1.51 1.51 (11.9) (38.9) (25.4) (63.5) (19.6) (64.4) M6A 0.187 4.7 1.04 0.42 6mm ALOK* 1.75 1.76 1.78 1.78 1.81	6A	BOI	0.050		0.04	0.00	3/8" A-LOK®			0.42	0.47	1.53	1.00	2.50	0.77	0.25
6M 0.250 6.4 2.34 0.29 3/3* Male MP1 (41.1) (41.1) (41.1) 60 0.250 6.4 2.34 0.29 3/8* UltraSeal (38.4) (44.5) <	6Z	BOL	0.250	6.4	2.34	0.29	3/8" CPI™			(10.7)	(11.9)	(38.9)	(25.4)	(63.5)	(19.6)	(6.4)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6M		0.250	6.4	2.34	0.29	3/8" Male NPT	1	1							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	60		0.250	6.4	2 34	0.20	3/8" HitraSeal	1.51	1.51	1						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.200	0.4	2.04	0.23				{						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.187	4.7	1.04	0.42		-								
MiQ2 Mi10A M10Z 0.250 6.4 2.34 0.42 0.42 10mm 0A-10K° 10mm CPI ^m (46.0) 1.81 (46.0)			0.250	6.4	2.34	0.42		1.78	1.78	1						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										{						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.250	6.4	2.34	0.42		-								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6F		0.406	10.3	6.42	0.37	3/8" Female NPT	1								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										{						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.406	10.3	6.42	0.37		(54.6)	(54.6)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.406	10.3	6.42	0.37		-								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.406	10.2	6.40	0.27				1						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OIVI		0.400	10.3	0.42	0.37	1/2 Male NPT			-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8Q		0.375	9.5	5.57	0.37	1/2" UltraSeal	1	1	0.69	0.70	1 74	1.50	4 00	0.90	0.38
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	81/	B8L	0.406	10.3	6.42	0.37	1/2" VacuSeal	2.21	2.21	1				1		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.400	10.5	0.42	0.37				-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.406	10.3	6.42	0.37		-								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0,406	10.3	6.42	0.37		2.25	2.25	1						
M12Z 0.375 9.5 5.57 0.37 12mm CPI™ (59.2) M16A 16mm A/ 0K [®] 2.33 2.33						0.01				{						
M16A 16mm A-LOK® 2.33 2.33			0.375	9.5	5.57	0.37		-								
	M16A		0.406	10.3	6.42	0.37	16mm A-LOK®	2.33	2.33]						
M16Z 0.400 10.0 0.42 0.07 16mm CPI™ (59.2) (59.2) Dimensions in inches/millimeters and a second and a sec	·									L	1	1	l		L	L

 $^{\ast}~$ Tested in accordance with ISA S75.02. Gas flow will be choked when P1- P2/ P1= xT.

† For CPI™ and A-LOK®, dimensions are measured with nuts in the finger tight position

Dimensions in inches/millimeters are for reference only, subject to change.

Go to

Table of Contents

Introduction

B

Parker manually, pneumatically, and electrically actuated three-way B Series Ball Valves may be used as diverting or selecting valves for fluids utilized in process and instrumentation applications. The standard three-way diverter valve is designed to accept media through the bottom port and direct it out of two outlet ports. When equipped with spring-loaded seats, the three-way valve may be used as a selector valve, alternately accepting media from either of two inlet sources (side ports) and directing it through a single outlet (bottom port).

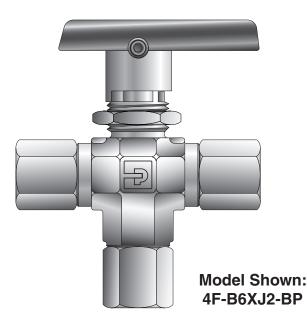
Features

- Available in 316 stainless steel and brass construction. Monel[®] Alloy 400 and Hastelloy[®] C-276 construction available for Diverter Valves upon request.
- Micro-finished ball provides a positive seal.
- ▶ Wide variety of US Customary and SI ports.
- ▶ 180 degree actuation.
- Panel mountable.
- Adjustable PTFE stem seal can be maintained in-line.
- ► Handle indicates flow direction.
- Low operating torques.
- ▶ Positive handle stops.
- Color coded handles.
- Optional pneumatic and electric actuation.
- Optional live-loaded PTFE stem seals.
- Optional non-adjustable O-ring stem seals.
- Optional stainless steel and extended handles.

Diverter Valve Specifications

Pressure Ratings with bottom port as inlet:

Material	CWP	with PTFE Seats
316 Stainless Steel	6000 psig (414 bar)*	1500 psig (103 bar)
Brass	3000 psig (207 bar)	1500 psig (103 bar)
Monel [®] Alloy 400		
B2 and B6:	3000 psig (207 bar)	1500 psig (103 bar)
B8:	2000 psig (138 bar)	1500 psig (103 bar)
Hastelloy® C-276		
B2 and B6:	4000 psig (276 bar)	1500 psig (103 bar)
B8:	3000 psig (207 bar)	1500 psig (103 bar)


* B6 Series: 6000 psig rating or 4400 psig (303 bar) CWP B8 Series: 6000 psig rating or 4000 psig (276 bar) CWP

Pressure Rating and Tubing Selection

For working pressures of A-LOK[®] and CPI™ tube connections,

Pressure Rating with side ports as inlet:

150 psig (10 bar)

Selector Valve Specifications

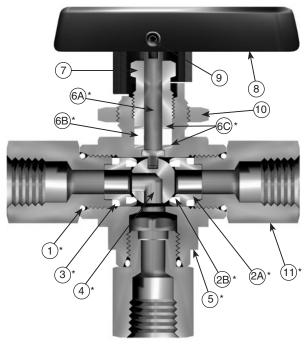
(Spring Loaded – B6 and B8 models only)

Pressure Rating with bottom port as inlet:

Pressure Rating with side ports as inlet:

316 Stainless Steel and Brass....3000 psig (207 bar) CWP

Pressure Rating and Tubing Selection


For working pressures of A-LOK[®] and CPI[™] tube connections, please see the Instrument Tubing Selection Guide (Bulletin 4200-TS), found in the Technical Section of the Parker Instrumentation Process Control Binder, or the Parker Instrument Fitting Installation Manual (Bulletin 4200-B4).

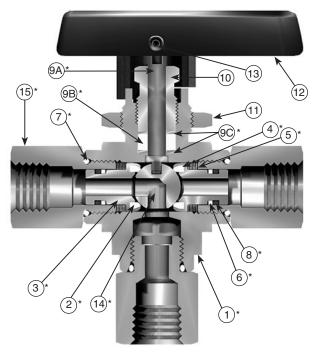
For working pressures of valves with external or internal pipe threads, please see Catalog 4260, Instrumentation Pipe Fittings.

Three-Way B Series Ball Valves

Diverter Valve

Model Shown: 4F-B6XJ-SSP

Materials of Construction


Item #	Part Description	Stainless Steel	Brass			
*1	Connector O-Ring	PTFE**				
*2A	Seat Retainer	ASTM A 276 Type 316	ASTM B 16 Alloy C36000			
*2B	Seat	PTFE, PCTFE	, PEEK			
*3	Retainer Seal	PTFE**	¢.			
*4	Ball	316 Stainless	s Steel			
*5	Body ASTM A 351 Grade CF3M		ASTM B 283 Alloy C37700			
*6A	Stem	ASTM A 276 Type 316				
*6B	Stem Seal	PTFE**	r.			
*6C	Stem Washer	316 Stainless	s Steel			
7	Packing Nut	ASTM A 479 Type 316	ASTM B 453 Alloy C34000			
8	Handle	Nylon 6/	6			
9	Handle Set Screw	Stainless S	Steel			
10	Panel Nut	316 Stainless	s Steel			
*11	End Connector	ASTM A 479 Type 316	ASTM B 16 Alloy C36000			

* Wetted Parts.

** Optional stem seal and body seal materials are described in the How to Order section.

Lubrication: Perfluorinated Polyether.

Selector Valve

Model Shown: 4F-B6XS2-SSP

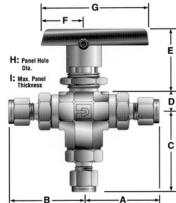
Materials of Construction

Item #	Part Description	Stainless Steel	Brass			
1	Pody	ASTM A 351	ASTM B 283			
I	Body	Grade CF3M	Alloy C37700			
*2	Seat	PTFE, P	EEK			
*3	Seat Retainer	ASTM A 276	Type 316			
4	Spring	Stainless	Steel			
*5	Seat Retainer Washer	316 Stainles	ss Steel			
*6	Back-up Ring	PTFE				
*7	Connector O-Ring	PTFE**				
*8	Seat Retainer O-Ring	Fluorocarbon Rubber**				
*9A	Stem	ASTM A 276 Type 316				
9B	Stem Seal	PTFE				
*9C	Stem Washer	316 Stainless	Steel***			
10	Packing Nut	ASTM A 479	ASTM B 453			
10	Facking Nut	Type 316	Alloy C34000			
11	Panel Nut	316 Stainles	ss Steel			
12	Handle	Nylon 6	6/6			
13	Handle Set Screw	Stainless	Steel			
*14	Ball	316 Stainles	ss Steel			
*15	End Connector	ASTM A 479	ASTM B 16			
10		Type 316	Alloy C36000			

* Wetted Parts.

** Optional stem seal and body seal materials are described in the How to Order section.

Lubrication: Perfluorinated Polyether.


***The lower stem washer material is PEEK for B8 Selector Valves. Lubrication: Perfluorinated polyether.

B

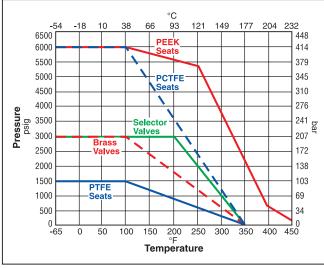
Dimensions & Flow Data

B

Model Shown: 4Z-B6XSPKR-V-SSP

			F 1.	Data		←B→ •		-							
		Orii		Data	1	End Connections					Dimension:				
Port Size	Basic Part #	Inch	mm	Cv	v *	Port 1 Port 2 Port	3 A†	Bt	С	D	nches (mm E) F	G	Н	
1A	Fall#				X _T *	1/16" A-LOK®	1.30	1.30	1.39	U	E	г	u	п	
1Z		0.052	1.3	0.06	0.56	1/16" CPI™	(33.0)	(33.0)	(35.3)						
2A		0.093	2.4	0.21	0.64	1/8" A-LOK®	1.36	1.36	1.45						
2Z		0.035	2.4	0.21	0.04	1/8" CPI™	(34.5)	(34.5)	(36.8)						
2F		0.165	4.2	0.63	0.59	1/8" Female NPT	1.07 (27.2)	1.07 (27.2)	1.15 (29.2)						
	5.01/	0.405			0.50		1.18	1.18	1.26	0.33	0.94	0.75	1.88	0.58	0.13
2M	B2X	0.165	4.2	0.63	0.59	1/8" Male NPT	(30.0)	(30.0)	(32.0)	(8.4)	(23.9)	(19.1)	(47.8)	(14.7)	(3.3)
4A		0.165	4.2	0.63	0.59	1/4" A-LOK®	1.48	1.48	1.56						
4Z						1/4" CPI™	(37.6)	(37.6)	(39.6)						
4M		0.165	4.2	0.63	0.59	1/4" Male NPT	(34.3)	(34.3)	(36.3)						
M3A		0.086	2.2	0.18	0.63	3mm A-LOK®	1.37	1.37	1.45						
M3Z		0.000	2.2	0.10	0.03	3mm CPI™	(34.8)	(34.8)	(36.8)						ļ
4A		0.187	4.7	0.70	0.69	1/4" A-LOK®	1.74	1.74	1.88						
4Z						1/4" CPI™	(44.2)	(44.2)	(47.8)						
4F		0.196	5.0	0.87	0.74	1/4" Female NPT	(38.4)	(38.4)	(41.9)						
4M		0.196	5.0	0.87	0.74	1/4" Male NPT	1.62	1.62	1.76						
-1111		0.150	0.0	0.07	0.74		(41.1)	(41.1)	(44.7)						
4Q		0.180	4.6	0.68	0.67	1/4" UltraSeal	1.51 (31.8)	1.51 (31.8)	1.65 (33.8)						
							1.75	1.75	1.89						
4V		0.188	4.8	0.70	0.69	1/4" VacuSeal	(35.1)	(35.1)	(37.1)						
6A	B6X	0.196	5.0	0.87	0.74	3/8" A-LOK®	1.80	1.80	1.94	0.47	1.53	1.00	2.50	0.77	0.25
6Z	box				-	3/8" CPI™	(45.7)	(45.7)	(49.3)	(11.9)	(38.9)	(25.4)	(63.5)	(19.6)	(6.4)
6M		0.196	5.0	0.87	0.74	3/8" Male NPT	1.62 (41.1)	1.62 (41.1)	1.76 (44.7)						
6Q		0.196	5.0	0.87	0.74	3/8" UltraSeal	1.52	1.52	1.65						
		0.190	5.0	0.07	0.74		(38.6)	(38.6)	(41.9)						
M6A		0.187	4.7	0.70	0.69	6mm A-LOK®	1.75 (44.5)	1.75 (44.5)	1.88 (47.8)						
M6Z M8A						6mm CPI™ 8mm A-LOK®	1.78	1.78	1.91						
M8Z		0.196	5.0	0.87	0.74	8mm CPI™	(45.2)	(45.2)	(48.5)						
M10A		0.196	5.0	0.87	0.74	10mm A-LOK®	1.81	1.81	1.95						
M10Z		0.190	5.0	0.07	0.74	10mm CPI™	(46.0)	(46.0)	(49.5)						
6F		0.406	10.3	3.62	0.64	3/8" Female NPT	1.95 (49.5)	1.95 (49.5)	2.29 (58.2)						
8A						1/2" A-LOK®	2.34	2.34	2.68						
8Z		0.406	10.3	3.62	0.64	1/2" CPI™	(59.4)	(59.4)	(68.1)						
8F		0.406	10.3	3.62	0.64	1/2" Female NPT	2.15	2.15	2.49			İ			
01		0.100	10.0	0.02	0.01		(54.6)	(54.6)	(63.2)						
8M		0.406	10.3	3.62	0.64	1/2" Male NPT	2.22 (56.4)	2.22 (56.4)	2.59 (65.8)						
00		0.275	05	2.46	0.60	1/0" +roCool	1.93	1.93	2.27						
8Q	B8X	0.375	9.5	3.46	0.62	1/2" UltraSeal	(49.5)	(49.5)	(57.7)	0.70	1.74	1.50	4.00	0.90	0.38
8V		0.406	10.3	3.62	0.64	1/2" VacuSeal	2.21	2.21	2.55	(17.8)	(44.2)	(38.1)	(101.6)	(22.9)	(9.7)
12A						3/4" A-LOK®	(56.1)	(56.1) 2.33	(65.0) 2.68						
12A 12Z		0.406	10.3	3.62	0.64	3/4" CPI™	(59.2)	(59.2)	(68.1)						
12F		0.406	10.3	6.42	0.37	3/4" Female NPT	2.25	2.25	2.59						
		0.400	10.0	0.42	0.37		(57.1)	(57.1)	(65.8)						
M12A		0.375	9.5	3.46	0.62	12mm A-LOK®	2.33 (59.2)	2.33	2.67						
M12Z M16A						12mm CPI™ 16mm A-LOK®	2.33	(59.2) 2.33	(67.8)						
M16Z		0.406	10.3	3.62	0.64	16mm CPI™	(56.9)	(56.9)	(65.5)						
·						flow will be abaled who			L ` /			Jimonoiou		I	

 $^{\star}~$ Tested in accordance with ISA S75.02. Gas flow will be choked when P1- P2/ P1= xT.


† For CPI™ and A-LOK®, dimensions are measured with nuts in the finger tight position

Dimensions in inches/millimeters are for reference only, subject to change.

В

Pressure vs. Temperature

Note: To determine MPa, multiply bar by 0.1

Note: This Pressure versus Temperature chart reflects the maximum temperature range of indicated materials.

When combining seat and seal materials, the most restrictive temperature rating of the seats or seals becomes the limiting factor on valve temperature range.

Elastomeric stem packing and seals are recommended if the application subjects the valve to thermal cycling.

Please see pages 2 and 4 for maximum pressure ratings.

Temperature Ratings:

PTFE	65°F to 350°F (-54°C to 177°C)
PCTFE	65°F to 350°F (-54°C to 177°C)
PEEK	65°F to 450°F (-54°C to 232°C)
	40°F to 250°F (-40°C to 121°C)
Fluorocarbon Rubber	15°F to 450°F (-26°C to 232°C)
Ethylene Propylene Rubber	65°F to 300°F (-54°C to 149°C)
Highly Fluorinated	
Eluorooorbon Dubbor	15°E to 200°E (26°C to 02°C)

Fluorocarbon Rubber -15°F to 200°F (-26°C to 93°C)

Flow Calculations with 1000 psig (69 bar) Inlet Pressure

Two-Way

		Pressu	re Drop	Wa	iter	Air		
Valve	Max.	ΔΡ		@ 60°F	(16°C)	@ 60°F (16°C)		
Series	Cv	psig	bar	gpm	m³/hr	scfm	m³/hr	
		10	0.7	2.9	0.7	92.4	156.2	
B2L	0.93	50	3.5	6.6	1.5	200.3	338.3	
		100	6.9	9.3	2.1	272.0	458.9	
		10	0.7	7.4	1.7	231.7	391.5	
B6L	2.34	50	3.5	16.5	3.8	494.2	834.7	
		100	6.9	23.4	5.3	657.0	1107.9	
		10	0.7	20.3	4.6	637.1	1076.8	
B8L	6.42	50	3.5	45.4	10.3	1373.6	2320.3	
		100	6.9	64.2	14.6	1852.3	3124.8	

Three-Way

Valve	Max.	Pressure DropWaterAir ΔP @ 60°F (16°C)@ 60°F (1					
Series	Cv	psig	bar	gpm	m³/hr	scfm	m³/hr
		10	0.7	2.0	0.5	62.7	106.0
B2X	0.63	50	3.5	4.5	1.0	137.1	231.7
		100	6.9	6.3	1.4	188.4	317.9
		10	0.7	2.8	0.6	86.7	146.6
B6X	0.87	50	3.5	6.2	1.4	190.5	321.8
		100	6.9	8.7	2.0	263.2	444.4
		10	0.7	11.5	2.6	360.6	609.5
B8X	3.62	50	3.5	25.6	5.9	789.7	1343.5
		100	6.9	36.2	8.2	1087.4	1836.6

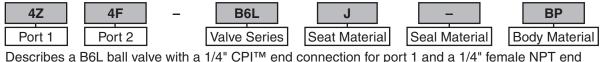
B Series Ball Valves

Go to

Table of Contents

How to Or Port 2	rder	Port	Port	1		Port 2 Model Shown: 6A-B6XJ2-SSP
Port 1	Port 2 Port 3	- Valve Series	Seat Material	-	Seal Material	Body Material
				1		
1A 1Z 2A 2Z 2F 2M 4A 4Z 4M M3A M3Z 4A 4Z 4F 4M 4Q 4V 6A 6Z 6M 6Q M6A M6Z M8A M8Z M10A	Ports 1, 2 and 3 1/16" A-LOK® 1/16" CPI™ 1/8" A-LOK® 1/8" CPI™ 1/8" Female NPT 1/8" A-LOK® 1/8" CPI™ 1/8" CPI™ 1/8" A-LOK® 1/4" A-LOK® 1/4" CPI™ 1/4" A-LOK® 1/4" A-LOK 3mm A-LOK 3mm CPI™ 1/4" A-LOK® 1/4" Female NPT 1/4" A-LOK® 1/4" VacuSeal 3/8" A-LOK® 3/8" Male NPT 3/8" Male NPT	Valve Series B2L B2X B2X B6L B6X	Seat Material J PTFE J2 PCTFE J2 PCTFE S2 PCTFE S2 Spring-Loaded PCTFE PKR PTFE Lubricated PEEK SPKR Spring-Loaded PTFE Lubricated PEEK	V EPR BN KZ LT VLT EPRLT BNLT	Seal Material) PTFE Fluorocarbon Rubber Ethylene Propylene Rubber Nitrile Rubber Highly Fluorinated Fluorocarbon Rubber Live-Loaded PTFE Packing with PTFE Seals Live-Loaded PTFE Packing with Fluoro carbon Rubber Seals Live-Loaded PTFE Packing with Ethylene Propylene Rubber Seals Live-Loaded PTFE Packing with Nitrile Rubber Seals Live-Loaded PTFE Packing with Nitrile Rubber Seals Live-Loaded PTFE Packing with Highly Flourinated Fluoro- carbon Rubber Seals	Body Material SSP 316 Stainless Steel BP Brass MP Monel® Alloy 400 HCP Hastelloy® C-276
M10Z 6F 8A 8Z 8F 8M 8Q 8V 12Z 12F M12A M12Z M16A M16Z	10mm CPI™ 3/8" Female NPT 1/2" A-LOK® 1/2" CPI™ 1/2" Female NPT 1/2" UltraSeal 1/2" VacuSeal 3/4" CPI™ 3/4" Female NPT 12mm A-LOK® 12mm CPI™ 16mm A-LOK® 16mm CPI™	B8L B8X	J PTFE J2 PCTFE S2 Spring-Loaded PCTFE PKR PTFE Lubricated PEEK SPKR Spring-Loaded PTFE Lubricated PEEK	Notes 1. Pan Vari 2. See 3. Vac Bra	el Mounting Nut supp ous port combination How to order. uSeal and UltraSeal a	s are available. are not available in

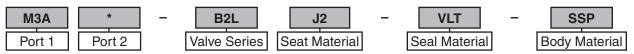
See examples on page 9. See pages 10 and 11 for information about How to Order Options and Maintenance Kits.



B

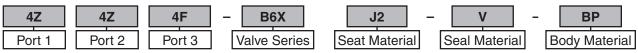
В

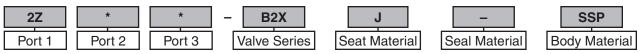
How to Order (Continued)


Examples: Two-Wav Valves

connection for port 2, PTFE seats, PTFE stem and body seals, brass construction, with a panel mounting nut.

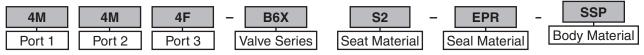
8A	*	-	B8L	J	-	BN	-	SSP
Port 1	Port 2		Valve Series	Seat Material		Seal Material]	Body Material


Describes a B8L ball valve with a 1/2" A-LOK[®] end connections for ports 1 and 2, PTFE seats, Nitrile rubber stem and body seals, stainless steel construction, with a panel mounting nut. *** Note:** If ports 1 and 2 are the same, eliminate the port 2 designator.


Describes a B2L ball valve with 3mm A-LOK[®] end connections for ports 1 and 2, PCTFE seats, fluorocarbon rubber body seals, PCTFE packing, stainless steel construction, with a panel mounting nut.

* Note: If ports 1 and 2 are the same, eliminate the port 2 designator.

Examples: Three-Way Diverter Valves


Describes a B6X ball valve with 1/4" CPI[™] end connections for side ports 1 and 2, 1/4" female NPT end connection for bottom port 3, PCTFE seats, fluorocarbon rubber stem and body seals, brass construction, and a panel mounting nut.

Describes a B2X ball valve with 1/8" CPI[™] end connections for ports 1, 2, and 3, PTFE seats, PTFE stem and body seals, stainless steel construction, and a panel mounting nut.

* Note: If ports 1, 2, and 3 are the same, eliminate the port 2 and port 3 designators.

Examples: Three-Way Selector Valves

Describes a B6X ball valve with 1/4" male NPT end connections for side ports 1 and 2, 1/4" female NPT end connection for bottom port 3, spring-loaded PCTFE seats, ethylene propylene rubber stem and body seals, stainless steel construction, and a panel mounting nut.

Describes a B8X ball valve with 1/2" A-LOK[®] end connections for ports 1, 2, and 3, spring-loaded PCTFE seats, Nitrile rubber body seals, live loaded PTFE packing, stainless steel construction, and a panel mounting nut.

* Note: If ports 1, 2, and 3 are the same, eliminate the port 2 and port 3 designators.

Options

В

Actuator Options

Double Acting (61AD) Pneumatic Actuator

Spring Returns (61AC & AO) Pneumatic Actuator

70, 80 & 90 Series Electric Actuator

O-Ring Stem Seals

Live-Loaded Stem Seals

Two-Way Valve Upstream and Downstream Drain Options

For draining upstream or downstream media on two-way valves at pressures below 150 psig (10 bar), add the suffix –VBU (Vented Ball Upstream) or –VBD (Vented Ball Downstream). Example: 4Z-B6LJ-SSP-VBU. This option is also suitable to vent the ball cavity in vacuum applications. For pressures up to 3,000 psig (207 bar), select S2 or SPKR spring-loaded seats and add the suffix –VBU (Vented Ball Upstream) or –VBD (Vented Ball Downstream). Example: 4Z-B6LJ-SSP-VBU.

Note: VBD and VBU are ball cavity vents only.

B Series Ball Valves

B

How to Order Options	Examples
Lock-Out Devices: Add the suffix LD to the end of the part number to order directly on the valve. For field installation, simply substitute the correct valve series number after LD.	4F-B6LJ2-BN-SSP -LD LD-B8L
Colored Lever Handles: Add the designator corresponding to the correct handle as a suffix to the part number (black is standard). W = white, B = blue, G = green, R = red, Y = yellow.	M6A-B6XPKR-SSP- G
Colored Round Handles: Add the designator corresponding to the correct handle as a suffix to the part number. S = Black, S-W = white, S-B = blue, S-G = green, S-R = red, S-Y = yellow. NOTE: Round handles are not recommended for B8 valves with PEEK seats.	M6A-B6XPKR-SSP- S-G
Metal Oval Handles: Add the designator corresponding to the correct handle as a suffix to the valve part number. OVSS = stainless steel, SA = oval aluminum. NOTE: Not available in size 2.	8F-B8LPKR-SSP -OVSS
Stainless Steel Handles: Add the suffix -ST to the end of the part number (B6 and B8 only).	4F-B6LJ-SSP-ST
Pneumatic Actuators: For detailed actuator information, refer to the Pneumatic Actuators section of this catalog. For factory assembly, add the actuator part number as the suffix to the valve part number. For field installation, specify the actuator desired. The appropriate mounting hardware may be obtained by adding the valve series and actuator size to the prefix MK- .	2F-B2XJ2-V-SSP-61ACX-2 61ACX-2 MK-B2X-61
Electric Actuators: For detailed actuator information refer to the <u>Electric Actuators section</u> of this catalog. For factory assembly, add the actuator part number as the suffix to the valve part number. For field installation, specify the actuator desired. The appropriate mounting hardware may be obtained by adding the valve series and actuator series to the prefix MK	8A-B8LPKR-BN-SS -71A 71A MK- B8L-70
Oxygen Cleaning: Add the suffix -C3 to the end of the part number to receive valves cleaned and asembled for oxygen service in accordance with Parker Specification ES8003.	4A-B6LJ-EPR-SSP -C3
Electron Beam Welded End Connections: For tamper resistant valves, add the suffix -EBW to the end of the part number of stainless steel valves to have end connections electron beam welded.	M6A-B6LSPKR-V-SSP -EBW
Fillet Weld End Connections: For seal welded valves, add the suffix -FW to the end of the part number of the stainless steel valves to have the end connections seal welded to the body.	8Z-B8LJ2-SSP -FW
Grounding Spring: To obtain B6 and B8 series valves with a grounding spring, add the suffix -SPG to the end of the part number.	8A-B8LJ2-SSP -SPG
How to Order Maintenance Kits	
Colored Round Handle Kits: Series-Handle-Color. (Example consists of a green handle and handle screw.) NOTE: Stainless Steel kits not available in size 2.	B6-RD-HANDLE-GREEN
Stainless Steel Handle Kits: Series-Handle-SS. (Example consists of a stainless steel handle and handle screw.)	B8-HANDLE-SS
Colored Lever Handle Kits: Series-Handle-Color. (Example consists of a red handle and handle screw.)	B6-HANDLE-RED
Two-way Valve Seal Kits:	
PTFE Stem Seal Kits: Kit-Valve Series and Seat Material-Body Material. (Consists of one PTFE stem seal, two stem seal washers, two encapsulated PTFE ball seats, two end connector PTFE seals, one assembly mandrel, maintenance instructions.)	KIT-B2LJ-SS
Elastomeric Stem Seal Kits: Kit-Valve Series and Seat Material-Elastomer Material-Body Material. (Consists of two stem seal Nitrile rubber O-rings, two PTFE back-up rings, two stem seal washers, two encapsulate two end connector Nitrile rubber O-ring seals, two seat retainer Nitrile rubber O-ring seals, stem glands and mainte	
Diverter Valve Seal Kits:	
PTFE Stem Seal Kits: Kit-Valve Series and Seat Material-Body Material. (Consists of one PTFE stem seal, two stem seal washers, two encapsulated PEEK ball seats, three end connector PTFE seals, one assembly mandrel, maintenance instructions.)	KIT-B6XPKR-SS
Elastomeric Stem Seal Kits: Kit-Valve Series and Seat Material-Elastomer-Body Material. (Consists of two stem seal fluorocarbon rubber O-rings, two PTFE back-up rings, two stem seal washers, two encapsulated PTFE ball seats, three end connector fluorocarbon rubber O-ring seals, two seat retainer fluorocarbo rubber O-ring seals, stem glands and maintenance instructions.)	KIT-B6XJ-V-SS
Selector Valve Seal Kits:	
PTFE Stem Seal Kits: Kit-Valve Series and Seat Material. (Consists of one PTFE stem seal, two stem seal washers, two encapsulated spring-loaded PCTFE ball seats, two seat retainer fluorocarbon rubber O-rings, three end connector PTFE seals, one assembly mandrel, maintenance in	KIT-B6XS2
Elastomeric Stem Seal Kits: Kit-Valve Series and Seat Material-Elastomer. (Consists of two stem seal fluorocarbon rubber O-rings, two PTFE back-up rings, two stem seal washers, two encapsulated spring-loaded PEEK ball seat assemblies, three end connector fluorocarbon O-ring seals, two seat retainer fluorocarbon rubber O-rings, stem glands and maintenance instructions.)	KIT-B6XSPKR-V
Live-loaded Seal Kits:	
Kit-Valve Series and Seat Material-Seal Material-Body Material.	KIT-B6LJ2-BNLT-SS

(Consists of one live-loaded PTFE stem packing, two packing springs (B8 series valves have four springs), three packing washers, two PCTFE encapsulated ball seats, two Nitrile rubber end connector O-ring seals, two Nitrile rubber seat retainer O-ring seals, maintenance instructions.)

