

FibroLaser™

Two-channel Linear Heat Detector ots30xx(s)-sc

Fiber-optic linear heat detector, XX = 01, 02, 04, 06, 10

- Linear temperature measurement for quick fire detection and precise localization of the fire source
- Two independent optical measuring channels
- Maximum length of the maintenance free sensor cable = 20 km (2x 10 km)
- Signal processing with OFDR-Technology (Optical Frequency Domain Reflectometry)
- 1000 free programmable zones
- Selectable alarm criteria
- High spatial resolution up 0.25 m
- Information regarding the direction of the fire spread
- Redundant sensor system is possible
- Suitable for wind speeds of up to 10 m/s
- Laser product class 1M according to DIN EN 60825-1: 2014

Measuring principle

The FibroLaser is based on a laser beam being sent through a fiber-optic cable. The fiber-optic cable scatters a small part of the laser radiation at any point, back to the source. The backscatter is measured by the controller.

Two independent sensor cables can be connected to a two-channel linear heat detector.

The near-infrared electromagnetic LED laser light radiation emitted is scattered in different ways by the fiber-optic cable:

- Rayleigh scattering
- Stokes scattering
- Anti-Stokes scattering

The Rayleigh scattered light has the same wavelength as the laser beam, the Stokes scattering has a slightly higher and the anti-Stokes scattering a slightly lower wavelength. The two Stokes scattering types are also referred to as Raman scattering. While Stokes scattering is not so temperature-dependent, anti-Stokes scattering is affected by the thermal energy of the fiber-optic cable's local temperature: The intensity increases with the temperature. The temperature of the fiberoptic cable is thus calculated from the intensity ratio between Stokes and anti-Stokes scattering.

Controller

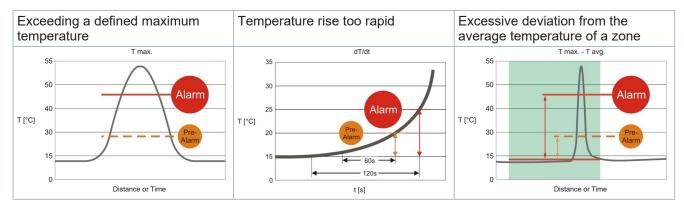
Transmitter

The Transmitter contains the laser and its control.

Receiver

- The Receiver contains the entire optical system.
- Coupling of the laser light generated in the transmitter to the sensor cable.
- Converting the back scatter light returned from the sensor fiber from an optical into an electrical signal and processes the electrical signal.

Digital unit

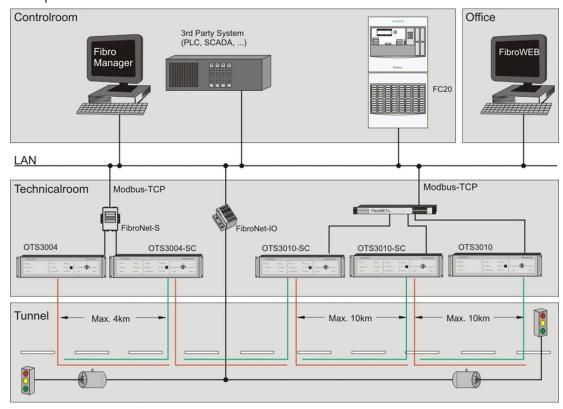

- This module controls the entire device and the measurement process.
- Calculates the temperature profile along the sensor cable based on the received measurement data.
- Manages the 4 integrated inputs (optional 40), which are used for resetting and forwarding external alarms or monitoring functions.
- Controls the 12 outputs (optionally 106) which are used to forward alarms and malfunction reports to a fire alarm control panel.
- The USB or Ethernet interface is used for commissioning. As an option a PC can be connected to the interface to display zones and/or the temperature profile (visualization software FibroManager).
- Protocols of previous generation Controllers are supported (OTS-100, OTS-X).

Power supply

- The power supply supplies all components of the controller with the necessary operating voltages.
- Controller selectable as DC 24 V (standard) or AC 115/230 V (optional).

Alarm criteria

The FibroLaser allows three different alarm criteria.


Use

Linear heat detectors are mainly used for applications in road tunnels and railway tunnels. The FibroLaser is also suitable for the monitoring of:

- Conveyor belts
- Underground mining transport systems
- Parking garages
- Industrial production facilities
- Theaters and operas
- Cable trays und cable ducts
- Escalators in subways and shopping centers
- Potentially explosive areas in refineries (Ex version)
- Power plants to monitor radioactively contaminated areas (interim storage, pump sump

Planning

Example:

Mechanical data

Controller	19" Rack, 3 units of height
Dimensions (H x W x D)	13.1 x 48.3 x 33.8 cm
Color	grey
Weight	13 kg
Transportation box, dimensions (H x W x D)	Wood, 62 x 43 x 61 cm
Weight (with Controller and Installation set)	35 kg

Electrical data

Operating voltage 24VDC controller (EN 54-22)	DC 1248 V			
Mains voltage 115/230VAC controller	AC 100240 V			
Maximum power consumption	<25 W (max. 45 W at 60 °C)			
Programmable inputs	4 (optional 40)			
Programmable outputs (potential-free)	12 (optional 106)			
Communication interface	FibroNET (TCP/IP, Modbus TCP/RTU, RS485, RS232)			

Optical data

Laser wavelength	1064 nm
Optical connector	E2000 APC / 8°
Laser classification (OTS evaluation unit)	Laser class 1M according to EN60825-1: 2014
Max. measuring distance (OTS30XXS-SC: XX = 01, 02, 04 per measuring channel)	2, 4, 8 km

Laser wavelength	1550 nm
Optical connector	E2000 APC / 8°
Laser classification (OTS evaluation unit)	Laser class 1M according to EN60825-1: 2014
Max. measuring distance (OTS30XX-SC: XX = 01, 02, 04, 06, 10 per measuring channel)	2, 4, 8, 12, 20 km

Ambient conditions

Storage temperature	-35+75 °C
Operating temperature	-10+60 °C
Humidity (no condensation allowed)	≤95 % rel.
Protection category (IEC 60529 / UL50E)	IP41, type 2

Approval

VdS (EN 54-22) G211076	G211076	
------------------------	---------	--

Disposal

The device is considered an electronic device for disposal in accordance with European Directive and may not be disposed of as domestic waste.

- Use only designated channels for disposing the devices.
- Comply with all local and currently applicable laws and regulations.

Smart Infrastructure A6V10323452_f_en

5

Issued by
Siemens Switzerland Ltd
Smart Infrastructure
Global Headquarters
Theilerstrasse 1a
CH-6300 Zug
+41 58 724 2424
www.siemens.com/buildingtechnologies

© Siemens 2011

Technical specifications and availability subject to change without notice.

Document ID A6V10323452_f_en Edition 2022-01-25